本論文將探討在輸入函數中含有死區及非線性雜訊之不確定系統之可變結構控制設計。除了在第一章中做一些概括論述及文獻回顧外,本論文將循序漸進做下列研究探討: 首先,針對在單一輸入函數中含有死區和非線性雜訊之較簡易的不確定系統,提出一種新的可變結構模式-追隨控制設計法則。吾人先設定一個具有理想參考特性的模式,再用本文所提出的可變結構模式-追隨控制器來確保誤差系統達到滑動模式狀態。其次,除了輸入非線性雜訊與系統之不確定性之外,吾人仍應考慮由時間延遲所引起的系統不穩定性。因此有必要針對在輸入函數中含有死區特性輸入與在狀態函數中含有時間延遲之不確定延時系統,提出一種新的可變結構控制設計法則。第三,因為系統越變越大及更複雜,伴隨而來的系統控制將更困難及複雜,所以這一步驟將把上述的方法擴展延伸到不確定大型連結系統。因而在此提出了不確定大型連結系統之分散式VSC設計。第四,基於不確定延時系統與不確定大型連結系統的設計理念,這一步驟採用VSC理論對具有死區及非線性雜訊之不確定大型延時系統提出了分散式強健控制的設計法則。 值得強調的是,對於上述的研討系統,吾人除了討論單一輸入之情況外,亦將其結構擴展延伸到多輸入情況之探討。最後,在第六章做了一些研究結論以及一些未來研究之規劃。 This dissertation deliberates the problem of variable structure controller design for uncertain systems subjected to dead-zones and sector non-linearities in the inputs. Firstly, a novel variable structure model-following control design is presented for a simple uncertain system containing single dead-zone or series nonlinearity. In this approach, given a model with ideal reference characteristics, we will propose a controller, which will force the error between the plant and the model to approach zero asymptotically. Secondly, in addition to the input nonlinearities and system uncertainties, one has to consider another source of instability arisen from time delay. Hence, a new variable structure controller is proposed for the purpose of stabilizing uncertain systems with time delay in the state and dead-zone in the input. Thirdly, because most of systems have become larger and more complicated and always accompanies with difficulty and complexity of system control, we extend the method mentioned above to an interconnected system and a new robust decentralized control scheme is proposed for uncertain large-scale interconnected systems through VSC theory. Fourthly, based on the approaches suggested in the above, a new decentralized variable structure control law is proposed for a class of uncertain time delayed large-scale systems, which with time delay in the interconnection and dead-zones or sector nonlinearities in the input. Furthermore, for all of the above investigated systems, not only single-input cases have been discussed but also the multi-input cases have been considered.