中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/92961
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42716249      在线人数 : 1457
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/92961


    题名: 基於物件重要性程度之影像尺寸調整評估機制;Quality Assessment of Image Retargeting based on Importance of Objects
    作者: 曹鈞;Chun, Tsao
    贡献者: 資訊工程學系
    关键词: 影像尺寸調整;畫質評估;視覺顯著圖;資訊損失;Image retargeting;Quality assessment;Visual saliency map;Information loss
    日期: 2022-11-16
    上传时间: 2024-09-19 16:35:53 (UTC+8)
    出版者: 國立中央大學
    摘要: 為了將影像完整呈現於各種尺寸的輸出裝置,且盡量減少視覺上的
    扭曲變形,許多基於內容之影像尺寸調整機制被提出,如何有效地評估
    各種方法的效果成為一項重要任務。本研究提出一個基於物件重要程度
    的影像尺寸調整評估機制,透過語義分割方法將影像中的所有像素點分
    類,根據語義中的類別,給予該所在區域不同的視覺重要程度,依此做
    為人眼視覺對於該區域受破壞的敏感度衡量,希冀獲致更貼近使用者主
    觀感受的顯著圖,並將其應用於長寬比相似性畫質衡量演算法以提升準
    確度。我們另外觀察到人眼觀看無前景物影像時容易受到畫面整體資訊
    損失的影響,因此提出無明顯前景物資訊損失懲罰調整策略。我們先利
    用語義資訊判斷場景中有無明顯前景物,再給予不同大小級別的資訊損
    失懲罰,提高無明顯前景物場景的評分準確度。實驗結果顯示,本研究
    能有效評估影像尺寸調整機制,與現有方法相較有更高的準確度。
    ;Many image retargeting methods have been proposed to resize images to
    fit in various sizes of display devices with less perceptual distortion. Assessing
    the quality of retargeted images has thus become an important task for
    developing such methods. In this research, we propose an image retargeting
    quality assessment (IRQA) based on importance of objects. We utilize
    semantic segmentation to classify pixels, which are assigned with different
    importance values representing the sensitivity of human eyes to distortion. A
    visual saliency map is created to better fit the subjective perception of humans
    and is then used in the evaluation method called “Aspect Ratio Similarity”
    (ARS) to improve its accuracy. Furthermore, as observing that human eyes
    tend to be affected more by the global information loss in images in which
    there is no obvious foreground object, we propose the strategy of information
    loss adjustment in such images. We first utilize semantic information to
    determine whether a foreground object exists and then adopt different degrees
    of information loss penalty to improve the accuracy of the assessment. The
    experimental results show that the proposed approach is effective in
    evaluating the image retargeting methods and outperforms existing quality
    assessment methods.
    显示于类别:[資訊工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML16检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明