中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/93004
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42694498      Online Users : 1445
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/93004


    Title: 幼兒學習語音人機對話系統設計與實作;Design and Implementation of Voice-Based Human-Machine Dialogue System for Early Childhood Learning
    Authors: 凌婉倩;Ling, Wan-Chien
    Contributors: 資訊工程學系在職專班
    Keywords: 幼兒學習;語音機器人;Whisper;GPT-3.5
    Date: 2023-06-27
    Issue Date: 2024-09-19 16:38:14 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 多元的閱讀活動能提昇幼兒的學習意願,透過聊天機器人的對話引導將能吸引幼兒注意力,增加閱讀的樂趣。市面上幼兒陪伴的機器人產品缺少能直接以自然語言互動的模式,而這些產品在面對幼兒不同的情緒反應時,將無法適時給予回饋。本研究提出能以自然語言互動的幼兒學習人機對話系統,為一個語音對話的機器人故事機。藉由一來一回的問答聊天,引導幼兒對童話故事的閱讀及理解。系統架構包含語音辨識、語意理解和文字轉語音,先以弱監督式學習的Whisper模型識別語音對話,再使用大型預訓練語言模型GPT-3.5以文字回應對話內容,最後使用Amazon Polly將文字回應轉換成自然的人類語音輸出。本研究驗證了基於多重AI引擎的幼兒互動學習對話框架,藉此提供後續幼兒學習應用系統的開發基礎。;Diverse readings can enhance young children′s willingness to learn. Engaging in conversations with chatbots can attract their attention and increase the enjoyment of reading. Robot products available in the market for young children lack the ability to interact directly in natural language, and they are unable to provide appropriate feedback with various reactions from young children. In this study, we propose a natural language interactive human-machine dialogue system for early childhood learning, specifically a voice-based story-telling chatbot. The system guides young children in reading by back-and-forth conversations. The system performs speech recognition, semantic understanding, and text-to-speech conversion. We use Whisper model in speech recognition, and generate text responses based on GPT-3.5, and finally convert the text responses into speech through Amazon Polly. We demonstrate effectiveness of a multi-AI engine-based framework for interactive dialogue systems in early childhood learning, which can serve as a foundation for future applications.
    Appears in Collections:[Executive Master of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML17View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明