中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/93152
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42713343      Online Users : 1376
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/93152


    Title: 一種可同時更新神經網路各層網路參數的新技術— 採用關聯式學習及管路化機制;Enabling simultaneous parameter updates in different layers for a neural network —using associated learning and pipeline
    Authors: 林廷翰;Lin, Ting-Han
    Contributors: 資訊工程學系
    Keywords: 倒傳遞;反向鎖定;關聯式學習;平行化訓練;模型平行化;back-propagation;backward locking;associated learning;parallel training;model parallelism
    Date: 2023-07-20
    Issue Date: 2024-09-19 16:44:40 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 倒傳遞 (Back-propagation, BP) 廣泛運用於今日的深度學習演算法,然而它仍存在反向鎖定的問題導致模型訓練效率不佳。許多研究嘗試解決反向鎖定問題,而關聯式學習 (Associated Learning, AL) 便是其中一種模型架構。雖然關聯式學習理論上可透過管線化來增加訓練的效率,但原論文並未實現管線化,本論文補足這個部份,並透過大量實驗及效能分析工具(profiler) 觀察關聯式學習管線化後的實際行為。本論文亦和過去使用倒傳遞訓練之模型做比較,探討各自的優勢與限制,並討論關聯式學習未來的研究方向。;Back-propagation (BP) is widely utilized in deep learning algorithms, but it suffers from the issue of backward locking, resulting in inefficient model training. Various research efforts have been made to address this problem, and one promising solution is Associated Learning (AL). In theory, AL has the potential to enhance training efficiency through pipelining. However, the original proposal lacks the implementation of the pipeline. In this thesis, we bridge this gap by implementing the pipeline mechanism and conducting experiments on multiple GPUs. By leveraging profiling tools, we analyze the behavior of AL after pipelining. We compare models trained using back-propagation and pipelined AL to examine their respective advantages and limitations. Moreover, we discuss potential future research directions for Associated Learning.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML13View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明