中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/93190
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 43364408      Online Users : 896
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/93190


    Title: 非監督式異常偵測方法之比較研究— 以經費報銷流程為例;Unsupervised Anomaly Detection in Reimbursement Processes: A Comparative Evaluation of Algorithms
    Authors: 孫逸群;SUN, YI-CHUN
    Contributors: 資訊管理學系
    Keywords: 非監督式異常偵測算法;事件紀錄檔;報銷流程;Unsupervised anomaly detection;Event log;Reimbursement process
    Date: 2023-07-18
    Issue Date: 2024-09-19 16:47:10 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在現代商業流程中,資訊系統所產生的有價值的事件紀錄檔在各種研究和調查中扮演著關鍵的角色。這些資料在識別異常值、檢測詐騙、以及支持流程改進和風險管理方面都有著至關重要的作用。而在異常偵測的不同類別中,非監督式異常檢測技術因其較少的要求所帶來的高實用性在現實世界應用中顯著出色。過去有關商業流程異常檢測的研究大多主要集中在利用特定的異常偵測技術,較少比較性研究,並通常未使用公共資料集。

    因此,本研究的目標是通過訓練和比較五種較具有代表性的非監督式異常偵測方法所建立之模型效能,為未來研究人員在利用事件紀錄檔進行相關非監督式異常檢測時建立可靠的參考基礎。為了確保結果的可靠性,本研究使用了三個分別記錄了不同的報銷流程的真實世界事件紀錄檔以進行模型訓練並回答研究問題。此外,本研究基於事件紀錄檔常見的三個基本元素(時間、資源、活動),定義了七個異常情境,以便比較不同模型之間的性能表現。通過實驗結果的評估和比較後,我們發現局部異常因子偵測方法( local outlier factor, LOF)是以報銷流程的事件紀錄檔進行異常偵測時,最適用之非監督式異常檢測方法。;Information systems generate valuable log data in modern business processes crucial in various investigations. Anomaly detection using this data is essential for identifying outliers, detecting fraud, and supporting process improvement and risk management. Among the different categories of anomaly detection, unsupervised anomaly detection techniques stand out for their practicality in real-world applications, thanks to their minimal requirements. Previous research on anomaly detection in business processes has predominantly concentrated on
    utilizing specific anomaly detection techniques, which lack comparison between models and are often conducted without employing public datasets. Therefore, this research aims to establish a reliable foundation for future researchers interested in utilizing log data for unsupervised anomaly detection in business processes.

    This is achieved by training and comparing five representative unsupervised anomaly detection algorithms. To ensure the reliability and robustness of the results, three real live event log datasets, capturing distinct reimbursement processes, are utilized to address the research questions. Additionally, seven anomaly scenarios, based on the three essential elements (time, resource, activity) commonly found in event logs, are defined to facilitate the comparison of performance between different models. Through evaluation and comparison, it is revealed that the local outlier factor (LOF) is the most suitable unsupervised algorithm for detecting anomalies in reimbursement process event logs.
    Appears in Collections:[Graduate Institute of Information Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML19View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明