本論文提出了一種基於石英製程的50-110 GHz漸變開槽天線設計。該天線採用石英基板,並通過CPW-CPS饋入方式,利用漸變開槽產生50-110 GHz的寬頻輻射模式。選擇漸變開槽是因為它具有高增益和寬頻特性。天線設計中使用了國家半導體研究中心提供的石英製程,石英基板的介電常數為3.79,切損耗為0.0006,並與BCB半導體介質(介電常數為2.65,切損耗為0.001)結合使用。該製程提供了4層金屬層用於設計。為了保持平面性,天線和CPW-CPS結構都設計在同一層金屬上。而驗證CPW-CPS過渡設計的有效性為使用背對背方式進行測試。針對單一天線設計中高頻相位不均勻的問題,在天線板端前緣添加了寄生元件,以改善相位分佈並提高高頻增益。在1×2天線陣列設計中,採用一分二的T-Junction饋電結構,模擬結果顯示單一天線和天線陣列均實現了50-110 GHz的寬頻特性。通過優化下的設計,本論文實現了具有高增益和寬頻特性的50-110 GHz漸變開槽天線,為高頻通訊和雷達系統等應用提供了一種有效的解決方案。 ;The thesis presents the design of 50-110 GHz Tapered slot antennas using a quartz-based fabrication process. The proposed design utilizes a quartz substrate and employs CPW-CPS feeding to achieve a wideband radiation. The choice of Tapered slot is motivated by its wideband characteristics. The quartz fabrication process provided by the National Semiconductor Research Center is utilized. The quartz substrate has a dielectric constant of 3.79 and a loss tangent of 0.0006. It is combined with the BCB semiconductor material, which has a dielectric constant of 2.65 and a loss tangent of 0.001. The process allows for the utilization of four metal layers in the design. To maintain planarity, both the antenna and the CPW-CPS structure are designed on the same metal layer. The CPW-CPS transition design is verified through back-to-back measurements. To address the issue of non-uniform phase distribution in the single antenna design at high frequencies, parasitic elements are added at the front edge of the antenna substrate to improve phase distribution and enhance high-frequency gain. In the design of a 1x2 antenna array, a one-to-two T-Junction feeding structure is employed, and simulation results demonstrate that both the single antenna and the antenna array achieve a wideband performance from 50 to 110 GHz. By optimizing the design using the quartz fabrication process, the thesis successfully realizes a 50-110 GHz Tapered slot antenna with high gain and wideband characteristics. This provides an effective solution for applications such as high-frequency communication and radar systems.