English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42702587      線上人數 : 1439
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/93309


    題名: 基於新聞趨勢萃取之時間序列預測模型;NTEformer: News-Trend Extractor Transformers for Time Series Forecastin
    作者: 黃宥程;Huang, Yu-Cheng
    貢獻者: 資訊工程學系
    關鍵詞: 時間序列預測;碳價格預測;聊天生成預訓練轉換器;深度學習;Time Series Forecasting;Carbon Price Prediction;ChatGPT;Deep Learning
    日期: 2023-07-26
    上傳時間: 2024-09-19 16:53:16 (UTC+8)
    出版者: 國立中央大學
    摘要: 由於全球暖化所帶來的問題,許多國家已開始實施碳排放限制,這導致碳交易市場的出現,並對精確的碳價預測需求日益增加。在時間序列預測領域中,存在著多種方法來提高預測準確性。由於多種影響因素,預測碳價具有一定的困難性。這些因素包括政治和經濟條件、技術進步、演變中的氣候政策、波動的化石燃料成本、可再生能源替代品的可用性以及氣候政策在減少碳排放方面的有效性。此外,由於碳價機制如配額交易系統和碳稅在許多國家仍屬相對新的政策,因此缺乏準確預測所需的歷史數據。我們的方法著重於有效地整合新聞資訊,通過引入政府政策、市場供需、經濟狀況、能源價格、氣候變化事件和投資者情緒等多個影響因素的有意義的新聞資訊,以增強基於Transformer的時間序列模型的預測能力。為了實現這一目標,我們使用ChatGPT將新聞數據轉化為基於不同觀點的多個強度指標,這些指標有助於預測價格上升。這為模型提供了更多具有資訊量的新聞輸入。此外,我們提出了NTEformer,這是一種新的方式,相較於最廣泛使用的早期連接方法,將文本數據與時間序列模型相結合,並引入了News-Trend Extractor,旨在更好地利用新聞資訊。我們在模型的解碼器中增加了一個News-Trend Extractor,專門用於從新聞數據中學習。通過一系列的實驗,我們將NTEformer與其他結合時間序列數據和文本的方法進行了比較,證明了其優異的性能。

    通過有效整合新聞資訊並充分利用新聞趨勢提取器的專業知識,NTEformer模型在預測碳交易價格方面提供了增強的能力,相比不使用新聞資訊的方法,將整體誤差減少了顯著的28%。全面的分析和實驗驗證了我們方法的有效性,展示了其優於其他融合策略的能力。;Due to the problems caused by global warming, many countries have initiated carbon emission restrictions, leading to the emergence of carbon trading markets and a growing demand for accurate carbon price predictions. In the realm of time series forecasting, various methods exist to improve prediction accuracy. Predicting carbon pricing is difficult due to several influential factors. These factors encompass political and economic conditions, technological advancements, evolving climate policies, fluctuating fossil fuel costs, the availability of renewable energy alternatives, and the effectiveness of climate policies in reducing carbon emissions. Furthermore, limited historical data exists for accurate predictions, as carbon pricing mechanisms like cap-and-trade systems and carbon taxes are relatively new policies in many countries. Our approach focuses on effectively incorporating news information to enhance the predictive capabilities of the Transformer-based time series model by introducing meaningful news information based on several influential factors, including government policies, market supply and demand, economic conditions, energy prices, climate change events, and investor sentiment. To achieve this, we employ ChatGPT to transform news data into multiple strength indicators based on different perspectives that contribute to price increases. This provides us with more informative news inputs for the model. Furthermore, we propose NTEformer, a novel way, compared to the most widely used early concatenation method, to combine text data into time series model with News-Trend Extractor, designed to better leverage news information. We augment the decoder of the model with a News-Trend Extractor, specifically designed to learn from news data. Through a series of experiments, we compare NTEformer with other methods that combine time series data and text, demonstrating its superior performance.

    By effectively integrating news information and leveraging the expertise of the News-Trend Extractor, the NTEformer model offers enhanced capabilities in predicting carbon trading prices, reducing the overall error by a remarkable 28% compared to the method without using news information. The comprehensive analysis and experiments validate the effectiveness of our approach, showcasing its ability to outperform other fusion strategy.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML26檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明