中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/93513
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42689924      Online Users : 1241
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/93513


    Title: Localizing Complex Terrain for Quadruped Robots using Adaptive Submodularity;Localizing Complex Terrain for Quadruped Robots using Adaptive Submodularity
    Authors: 張軒旗;Chang, Hsuan-Chi
    Contributors: 數學系
    Keywords: 次模性;多足運動;最大覆蓋問題;觸摸定位;Submodularity;Legged Locomotion;Maximal coverage problem;Touch Localization
    Date: 2023-04-19
    Issue Date: 2024-09-19 17:09:52 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 近年以來,多足機器人的運動學已被廣泛研究。該研究領域的主
    要問題在於環境的不確定性。為了解決這個問題,本研究提出了一
    種稱為Adaptive Submodularity with Hypothesis Pruning(ASHP)的方
    法, 將不規則地形上的運動問題重新定義為覆蓋Perlin Noise領域中的
    問題。多足機器人能夠在沒有外部感受器的情況下,漸漸地適應在復
    雜地形上的運動。Adaptive Submodularity在本文中被應用於預測地
    形的樣貌,並提供相關的理論保證值。模擬和實驗顯示出本文提出的
    方法相比於Random Selection有更小的預測誤差,且相較於其他的模
    型(RMA)有更高的成功率及穩定性。;The locomotion of the legged robot has been widely researched in
    recent years. The main issue in this research area is environmental uncertainty.
    To overcome this issue, this research proposed a method called
    Adaptive Submodularity with Hypothesis Pruning(ASHP), which reformulates
    the locomotion problem on irregular terrains as the coverage
    problem in the Perlin domain. The legged robot is able to adaptively
    select locomotion over complex terrains without exteroceptive sensors.
    The adaptive submodularity is utilized to predict the terrain with theoretical
    guarantees. The simulations and experiments demonstrate that
    the proposed approach has less prediction error and a higher success
    rate than the benchmark, the experiments also show that ASHP is more
    robust than the benchmark method(RMA).
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML14View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明