中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/93527
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42696988      Online Users : 1374
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/93527


    Title: 應用分類重建學習偵測航照圖幅中的新穎坵塊;Detecting Novel Parcels in Aerial Images Using Classification Reconstruction Learning
    Authors: 吳永璿;Wu, Yung-Syuan
    Contributors: 資訊工程學系
    Keywords: 分布外檢測;CROSR;坵塊分類;航攝影像;OOD detection;CROSR;parcel recognition;aerial images
    Date: 2024-01-19
    Issue Date: 2024-09-19 17:10:53 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 彩色紅外線(英語:Color-Infrared, 縮寫 CIR)航照圖幅中的水稻坵塊識別可揭示農作物種植園的位置和面積等資訊,從而協助政府制定政策。先前針對水稻坵塊識別的研究[1]已經為此任務實現了一個封閉集合分類器,並且它被證明在推理論過程中容易受到新穎坵塊的影響而產生誤判。該封閉集合分類器由於缺乏分布外檢測,在推論階段是不穩健的。本文提出了一種基於開放集合識別分類重建學習 (英語:Classification Reconstruction Learning for Open Set Recognition,縮寫CROSR) 的新穎坵塊檢測方法。具體來說,我們用名為 RecUNet 的特製深度神經網絡替換了原 CROSR 架構中用於提取特徵向量的神經網絡 DHRNet,RecUNet 有助於保存低階語義密集特徵圖。實驗證明 RecUNet 相較於 DHRNet 可以在 AUROC 效能評估指標帶來百分之十五的提升。此外,我們提供的初步結果顯示在航照圖幅內檢測到新穎坵塊時,使用每個航照圖幅中的新穎坵塊檢測率來預測逐圖幅水稻識別性能下降是可行的。;Rice parcel recognition in Color Infrared (CIR) aerial images reveals information such as location and area of crop plantations that assist government policymaking. Prior work on rice parcel recognition[1] has implemented a closed-set classifier for this task, and it was shown to be vulnerable to novel parcels during inference. Without outlier a detection mechanism, the close set classifier is not robust during inference. This paper presents an approach for novel parcel detection in CIR aerial image frames based on Classification-Reconstruction learning for Open-Set Recognition (CROSR). Specifically, we replaced the neural network for latent vector extraction DHRNet with a customized
    deep neural network named RecUNet that facilitates preservation of low-level semantic
    dense representation maps. Experimental validation demonstrated that RecUNet brought
    an improvement of 15 percent in terms of AUROC compared to DHRNet. Furthermore,
    we provide preliminary findings showing that upon detection of novel parcels within aerial
    image frames, it is feasible to predict frame-wise rice recognition performance drops using
    per aerial image frame novel parcel detection ratios.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML16View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明