中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/93561
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42690106      Online Users : 1332
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/93561


    Title: 對於NBA主力球員未來表現效率的公式創造與研究
    Authors: 周凱緯;Chou, Kai-Wei
    Contributors: 數學系
    Keywords: 美國職業籃球聯賽;機器學習;K-平均演算法;特徵工程;多項式迴歸;NBA;Machine Learning;K-means Clustering;Feature Engineering;Polynomial Regression
    Date: 2023-07-24
    Issue Date: 2024-09-19 17:14:13 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本篇論文靈感來自於美國職棒大聯盟(MLB)近期多人注目的賽伯計量學(Sabermetrics),賽伯計量學對各項傳統的基礎數據做分析,組合出多項由基礎數據組合而來的進階數據。因此,本篇論文主要是希望能夠設計出一套使用基礎數據來評估美國職業籃球聯賽(NBA)球隊中主力球員未來表現效率的公式。研究中所蒐集的資料來源於NBA官網和網站 Basketball-Reference 。
    本次研究先將所有資料分群後透過大量數據觀察,根據分群結果挑選出主力球員,接著我們針對主力球員資料來做預測。過程中使用了多個不同的特徵工程手法,當中包括一個自行設計的特徵工程手法,效果也較其他手法佳。最後也放上了表格做比較,該表格顯示使用更多的模型搭配剛才使用過的特徵工程方法來做預測的訓練集和測試集分數,並且比較各模型與各個特徵工程手法之間的結果。;This paper is inspired by sabermetrics in Major League Baseball (MLB) in the United States. Sabermetrics involves analyzing various traditional basic data and combining them to create advanced metrics. Therefore, the main goal of this paper is to design a formula that uses basic data to evaluate the future performance efficiency of key players in the National Basketball Association (NBA). The data for this research was collected from the NBA official website and the Basketball-Reference website.
    In this study, we do clustering to all the data, and through extensive data observation, key players were selected based on the clustering results. Subsequently, we focused on predicting the performance of these key players using their data. Various feature engineering techniques were employed in the process, including a self-designed method, which yielded better results compared to other techniques. Finally, a comparison table was provided, showing the scores of the training and testing sets when using multiple models in conjunction with the feature engineering methods used earlier. The table also compares the results between different models and feature engineering techniques.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML25View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明