中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/93571
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42688507      Online Users : 1002
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/93571


    Title: 關於一些非線性降維的方法與改進;On Some Nonlinear Dimensionality Reduction Methods and Improvements
    Authors: 王先弘;Wang, Xian-Hong
    Contributors: 數學系
    Keywords: 維度縮減;主成分分析;線性判別分析;多維尺度擬合;等距映射;擴散映射;拉普拉斯特徵映射;局部線性嵌入;核主成分分析;dimensionality reduction;principal component analysis;linear discriminant analysis;multidimensional scaling;Isomap;diffusion maps;Laplacian eigenmap;locally linear embedding;kernel PCA
    Date: 2023-07-25
    Issue Date: 2024-09-19 17:20:09 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 降維是指減少數據集中變量的數量,理想情況下接近其內在維度,同時保留原始 數據的有意義特性,它通常是資料科學中模型訓練之前的數據預處理步驟。具體 來說,它可用於資料可視化、集群分析、降噪,或作為促進其他研究的中間步 驟。在這篇論文中,我們簡要介紹主成分分析和線性判別分析兩種線性降維的方 法,和一些主要的非線性降維方法,包括多維尺度擬合、等距映射、擴散映射、 拉普拉斯特徵映射、局部線性嵌入和核主成分分析等方法的推導。此外,我們借 助測地距離對拉普拉斯特徵映射和擴散映射進行了改進,我們還提出了一種選擇 降維維度的方法。最後,我們進行數值實驗並比較各種降維技術。;Dimensionality reduction is reducing the number of variables in a dataset, ideally close to its intrinsic dimension, while retaining meaningful properties of the orig- inal data. It is usually a data preprocessing step before training models in data science. Specifically, it can be used for data visualization, cluster analysis, noise reduction, or as an intermediate step to facilitate other studies. In this thesis, we briefly present the derivations of linear dimensionality reduction methods of the principal component analysis and linear discriminant analysis, and several nonlinear dimensionality reduction methods, including the multidimensional scaling, isometric mapping, diffusion maps, Laplacian eigenmap, locally linear embedding, and ker- nel PCA. Furthermore, we propose modifications to the Laplacian eigenmap and diffusion maps with the help of geodesic distance. We also present a method for selecting the dimension for dimensionality reduction. Finally, we perform numerical experiments and compare the various dimensionality reduction techniques.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML21View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明