中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/93587
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42685426      Online Users : 1636
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/93587


    Title: 一種計算曲率的類神經網路方法;A Neural Network Approach for Computations of Curvature
    Authors: 林靖旻;Lin, Jing-Min
    Contributors: 數學系
    Keywords: 類神經網路;曲率;Neural Network;Curvature
    Date: 2023-08-15
    Issue Date: 2024-09-19 17:20:44 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本文旨在討論使用類神經網路逼近由離散點構成的曲線或曲面的方法,並期望通
    過這種逼近結果來估計目標函數的曲率。在這個研究裡,我們發現一般架構的神經網
    路在逼近週期函數的過程中,受限於輸入的資料以及架構的侷限,並不能很好的逼近
    週期函數。為此,我們提出一種想法,將輸入資料映射至圓的參數方程式,再送入神
    經網路進行訓練,使得神經網路具備週期函數的特徵,藉此能夠更好的逼近週期函數
    以及極座標系的曲線。此外,基於這個想法,我們還嘗試將輸入資料映射至球的參數
    方程式,以此來逼近球座標系的曲面。而在最後,我們測試並且紀錄了不同架構的神
    經網路逼近目標函數的表現,以及再計算曲率後的結果,以期在未來透過神經網路處
    理這類問題時,能夠更精準的使用適合的神經網路。
    ;This thesis aims to discuss the methods of using neural networks to approximate curves
    or surfaces composed of discrete points and estimate the curvature of the target function
    through this approximation. In this study, it was found that normal shallow neural
    network structures are limited in their ability to approximate periodic functions due to
    constraints imposed by the input data and network structure. To address this limitation,
    a new idea is proposed, which involves mapping the input data to the parameter equation
    of a circle and training the neural network using this transformed data. This approach
    allows the neural network to possess the characteristics of periodic functions, enabling
    better approximation of periodic functions and the curves in polar coordinate system.
    Additionally, based on this idea, we try to map the input data to the parameter equation
    of a sphere to approximate surfaces in a spherical coordinate system. Finally, we tested
    and trained different network structures for their performance in approximating the target
    function and calculating the curvature. The aim is to have more precise utilization of
    suitable neural networks in the future when dealing with similar problems through neural
    network processing.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML44View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明