English
| 正體中文 |
简体中文
|
全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42755953 線上人數 : 2574
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by
NTU Library IR team.
搜尋範圍
全部NCUIR
資訊電機學院
電機工程研究所
--博碩士論文
查詢小技巧:
您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
進階搜尋
主頁
‧
登入
‧
上傳
‧
說明
‧
關於NCUIR
‧
管理
NCU Institutional Repository
>
資訊電機學院
>
電機工程研究所
>
博碩士論文
>
Item 987654321/9384
資料載入中.....
書目資料匯出
Endnote RIS 格式資料匯出
Bibtex 格式資料匯出
引文資訊
資料載入中.....
資料載入中.....
請使用永久網址來引用或連結此文件:
http://ir.lib.ncu.edu.tw/handle/987654321/9384
題名:
進化演算法應用在多層感知迴授等化 器上之效能分析
作者:
王琮星
;
Cong-Xing Wang
貢獻者:
電機工程研究所
關鍵詞:
進化演算法
;
EA
日期:
2002-06-19
上傳時間:
2009-09-22 11:46:39 (UTC+8)
出版者:
國立中央大學圖書館
摘要:
模擬類神經網路(Nerous network)的多層感知機(MLP)架構,其非線性的特性結構運用在調適性等化器(Adaptive Equalizer)上,可解決訊號空間的非線性問題。而訊號受符元干擾(ISI)和Noise的影響,等化器的運用是必要的。傳統式調適性等化器利用最小均方差演算法(Least Mean Square, LMS),而多層感知機的網路學習演算法則為倒傳遞演算法(Backpropagation algorithm, BP)。 本篇論文將探討進化演算法(Evolution algorithms ,EAs),並將之應用在多層感知機(MLP)之後遞式判別回授等化器(Decision Feedback Equalizer, DFE)上。利用進化演算法全域搜尋(global search)的特性,使等化器的效能達到更理想的狀態。EA是模擬生物基因演進的運用法則,經由交配(crossover)、突變(mutate)、選擇(selection)等程序,找出等化器最佳係數解。此論文並針對各個程序步驟做深入探討,並分析各參數值(parameter)對效能(performance)的影響,更完整建構進化演算法(EA)的設定,使EA能在運用上有更佳的效能。
顯示於類別:
[電機工程研究所] 博碩士論文
文件中的檔案:
檔案
大小
格式
瀏覽次數
在NCUIR中所有的資料項目都受到原著作權保護.
社群 sharing
::: Copyright National Central University. | 國立中央大學圖書館版權所有 |
收藏本站
|
設為首頁
| 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
DSpace Software
Copyright © 2002-2004
MIT
&
Hewlett-Packard
/
Enhanced by
NTU Library IR team
Copyright ©
-
隱私權政策聲明