中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/94492
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42696936      在线人数 : 1355
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/94492


    题名: 多孔材料幾何形狀與力學性質關係之探討;Investigation of the Relationship Between the Geometric Shape and Mechanical Properties of Porous Materials
    作者: 劉曉陽;Liu, Hsiao-Yang
    贡献者: 土木工程學系
    关键词: 多孔材料;有限元素法;3D列印;porous materials;finite element method;3D printing
    日期: 2024-07-29
    上传时间: 2024-10-09 14:47:47 (UTC+8)
    出版者: 國立中央大學
    摘要: 多孔材料是一種特殊的材料結構,其發展已經具有千年的歷史,相較於實心材料,材料內適當的孔隙配置能使其整體更具有輕質、吸震、抗衝擊、隔音、保溫、高透氣等特徵,在許多工程領域都發揮了重要的作用,如:建築、航空航太、汽車工業和生物醫學工程等。車輪框、 桁架結構、人工骨骼以及機翼的設計就是現階段多孔材料的應用。而早在人類文明發現多孔隙材料的優點前,生物的演化就已將上述優點充分發揮,在自然界中已經自然的進化出了許多低相對密度、高勁度 和強度的多孔結構材料,鳥喙與鳥骨骼、蜂巢中之蜂窩結構便是極具代表性的例子。
    近年來,隨著3D列印以及計算能力及方法的提升,使得材料的使用與孔隙組成的排列更為多元與複雜,進而可將研究的觸角更加延伸。可以製造更複雜結構的多孔材料,各種材料如PLA、TPU,都可以設計複雜的幾何結構再透過3D列印順利完成。
    本論文即基於前述背景,使用數值模擬方法中之有限元素法進行多孔材料之力學數值模擬,探討多孔材料內部結構材料組成、材料強度與力學行為彼此間之關係。本論文主要分析內容分別為結構孔隙材料的受壓、受剪力與動力分析;壓力分析與剪力分析探討了不同種類的多孔結構,如孔隙尺寸、排列方式、幾何形狀與承載力之關係,動力分析則是探討多孔材料於衝擊波作用下對應力波傳遞之影響。
    ;Porous materials are a unique material structure with a development history spanning thousands of years. Compared to solid materials, the appropriate arrangement of pores within these materials can make them lighter overall and impart features such as shock absorption, impact resistance, sound insulation, thermal insulation, and high breathability. These characteristics have made porous materials play important roles in many engineering fields, including construction, aerospace, automotive industry, and biomedical engineering. Current applications of porous materials include wheel frames, truss structures, artificial bones, and wing designs.Even before human civilization discovered the advantages of porous materials, biological evolution had already fully utilized these benefits. Many low-density, high-stiffness, and high-strength porous structural materials have naturally evolved in the natural world. Notable examples include the beaks and bones of birds, and the honeycomb structures within beehives.
    In recent years, advancements in 3D printing, along with improvements in computational capabilities and methods, have made the use of materials and the arrangement of pores more diverse and complex, extending the reach of research even further. Porous materials with more intricate structures can now be manufactured, and various materials such as polylactic acid (PLA) and thermoplastic polyurethane (TPU) can be designed with complex geometries and successfully produced through 3D printing.
    This thesis is based on the aforementioned background and uses the finite element method (FEM) in numerical simulation to study the mechanics of porous materials. It explores the relationships between the internal structural composition, material strength, and mechanical behavior of porous materials. The main analytical content of this thesis includes compression, shear force, and dynamic analysis of structural porous materials.
    The pressure and shear force analyses investigate the relationships between various types of porous structures—such as pore size, arrangement, geometric shape, and load-bearing capacity. The dynamic analysis examines the effect of porous materials on stress wave propagation under the action of shock waves.
    显示于类别:[土木工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML34检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明