中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/94533
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42682029      Online Users : 264
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/94533


    Title: 活動散場之捷運異常進站量起迄分佈預測
    Authors: 洪啓洋;Hung, Chi-Yang
    Contributors: 土木工程學系
    Keywords: 歷史分時票證起迄數據;起迄比例預測;異常值;活動特徵;學習率;historical time-series ticket OD data;OD proportion prediction;anomaly values;activity features;learning rate
    Date: 2024-08-21
    Issue Date: 2024-10-09 14:52:42 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 摘要
    運量預測在城市交通管理中具有重要的應用價值其中起迄之預測更能有效瞭解乘客的移動模式進而有效地安排列車運行時間表和車輛配置,以匹配實際需求,然而傳統方法常常無法有效應對節假日、特殊活動或突發事件散場對乘運量的影響,這導致預測準確度不高。為解決這一問題,本研究提出了一種類神經網路預測模型,結合活動標籤和歷史分時起迄數據,以提高對特殊活動期間乘客起迄分佈的準確預測能力。
    該模型利用PyTorch框架中的nn.Module構建,輸入包括時段、進站點、出站點、人次數據、工作日或假日、異常事件標記、活動類型及起迄點間行車時間等特徵,輸出則為各站點的出站比例,同時本研究因起迄比例為機率分佈故使用交叉熵損失函數能有效提高模型對捷運站點起迄分佈的準確預測。
    在學習率算法上,本研究從Adam轉為SGD,並手動調整學習率以避免模型輸出極端值,顯著改善了模型對高維度數據的適應性。此外本研究提出了針對臺北捷運的預測性調度和增強服務建議,包括找出與發生特殊活動站點關聯較強的迄點並提前於該站點做準備和制定活動合作策略,以提升整體運營效率和乘客滿意度。
    ;Abstract
    Passenger volume prediction in urban transportation management is crucial, particularly origin-destination (OD) prediction, which helps understand passenger movement patterns and efficiently schedule train operations and vehicle allocation. Traditional methods often fail to handle holidays, special events, or unexpected incidents, resulting in low prediction accuracy. To address this, we propose a neural network prediction model that combines activity labels with historical time-series OD data, improving prediction accuracy during special events.Our model, constructed using the nn.Module in PyTorch, takes inputs such as time periods, entry and exit stations, passenger counts, workdays or holidays, anomaly event markers, activity types, and travel times between OD points. The output is the exit proportion at each station. Given that the OD proportion is a probability distribution, we use the cross-entropy loss function to enhance the model′s accuracy in predicting OD distributions for metro stations. For the learning rate algorithm, we switch from Adam to SGD and manually adjust the learning rate to avoid extreme values in the model output, significantly improving the model′s adaptability to high-dimensional data. Additionally, we propose predictive scheduling and enhanced service recommendations for the Taipei Metro, including preemptively adjusting train intervals, real-time updates of passenger flow information, and developing event cooperation strategies to boost overall operational efficiency and passenger satisfaction. Ultimately, we use ticket OD data to calculate inter-station volume.
    Appears in Collections:[Graduate Institute of Civil Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML49View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明