中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/94629
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42666197      Online Users : 2001
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/94629


    Title: 運用合成孔徑雷達影像分析填海造陸的地基沉降;Utilizing Synthetic Aperture Radar Imagery to Analyze Ground Subsidence in Land Reclamation Areas
    Authors: 沈帛儒;Shen, Po-Ju
    Contributors: 太空科學研究所
    Keywords: 合成孔徑雷達;填海造陸;地基沉降;短基線測量;SAR;Land Reclamation;Ground Subsidence;SBAS
    Date: 2024-07-11
    Issue Date: 2024-10-09 15:20:33 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 隨著城市化進程加快,填海造陸是許多國家擴展基礎設施建設的重要手段,然而,這些新生土地通常會面臨不同程度的地基沉降,可能影響建築物和設施的穩定性,對其安全性構成重大挑戰。傳統的沉降監測方法,如水準測量和GPS,雖然準確度備但成本也高,量測的範圍亦有限,且由於地表變形常是不規則的起伏,因此會需要透過大量的測站佈設,才能達到有效的監測成果。
    合成孔徑雷達(SAR)技術能夠提供大範圍、高頻率和高精度的地表變形監測數據,由於其不受天候限制的特性,可達到全天時的觀測條件。本研究運用短基線測量法(SBAS)的方式進行影像處理,蒐整海上機場1年內的Sentinel-1雷達影像數據,並以ASF Vertex 的HyP3平台先行進行干涉處理(InSAR),並透過MintPy開源程式進行影像數值的分析,以得出目標區域的沉降量。
    實驗結果顯示,運用短基線測量法所分析出的數值,與機場官方所發佈的數據幾乎吻合,且成果能以視覺化的方式呈現,或以Google Earth等方式開啟,讓使用者能針對感興趣的區域直觀式地進行查找,使分析出的數據更容易理解。
    本研究旨在探索SAR影像在填海造陸區域地基沉降監測中的應用潛力。通過精確監測和分析沉降數據,可以提前預警潛在的工程風險,並運用SAR影像分析技術,系統性地評估填海造陸區域的地基沉降情況,以期為相關工程和規劃提供科學依據,並為城市規劃和基礎設施建設提供重要依據。;With the acceleration of urbanization, land reclamation has become an important means for many countries to expand infrastructure construction. However, these newly reclaimed lands often face varying degrees of ground subsidence, which can affect the stability of buildings and facilities, posing significant safety challenges. Traditional subsidence monitoring methods, such as leveling surveys and GPS, while accurate, are costly and limited in scope. Moreover, because ground deformation is often irregular, effective monitoring requires a large number of measurement stations.
    Synthetic Aperture Radar (SAR) technology can provide extensive, high-frequency, and high-precision ground deformation monitoring data. Its all-weather observation capability makes it an invaluable tool. This study uses the Small Baseline Subset (SBAS) method for image processing, collecting one year of Sentinel-1 radar imagery of offshore airports. Initial interferometric processing (InSAR) is conducted using the HyP3 platform, followed by numerical analysis of the imagery through the MintPy open-source program to derive subsidence amounts in the target area.
    The experimental results show that the values analyzed using the SBAS method closely match the data distributed by the airport authorities. These results can be visualized and opened in applications such as Google Earth, allowing users to intuitively explore areas of interest, making the analyzed data easier to understand.
    This study aims to explore the potential of SAR imagery in monitoring ground subsidence in land reclamation areas. By precisely monitoring and analyzing subsidence data, potential engineering risks can be identified early. Utilizing SAR imagery analysis technology, the study systematically evaluates the ground subsidence conditions in land reclamation areas, providing scientific evidence for related engineering and planning, and offering critical support for urban planning and infrastructure construction.
    Appears in Collections:[Graduate Institute of Space Science] Department of Earth Sciences

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML65View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明