中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/94679
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42667717      Online Users : 2057
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/94679


    Title: 應用Spatial Attention U-Net神經網路於VIPIR垂直電離圖的自動判圖處理;Application of Spatial Attention U-Net Neural Network in autoprocessing of VIPIR vertical ionograms
    Authors: 鄭子琳;Cheng, Zih-Lin
    Contributors: 太空科學與工程學系
    Keywords: 電離圖;神經網路
    Date: 2024-08-23
    Issue Date: 2024-10-09 15:23:22 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在本研究中,提出了一種基於Spatial Attention U-Net (SA U-Net)神經網路從電離圖中提取電離層回波訊號的方法。電離圖資料由位於台灣花蓮(北緯 23.99°,東經 131.61°)的垂直入射脈衝電離層雷達(Vertical Incidence Pulsed Ionospheric Radar,VIPIR)提供,每天可產生288張電離圖。SA U-Net是一種以圖像分割為目的而開發的卷積神經網路。目前,我們收集了2013年8月至2014年6月的常態數據,使用SA U-Net訓練以及自動處理這些數據,並以各訊號的臨界頻率以及虛擬高度準確度作為判斷SA U-Net性能的方式。最後,我們還對訓練資料進行分類處理,嘗試使用分類後的資料訓練神經網路模型,期望能提高模型對該類電離圖訊號的判斷成功率。;In this study, we propose a method for extracting ionospheric echo signals from ionograms based on Spatial Attention U-Net (SA U-Net) neural network. Ionogram data are provided by the Vertical Incidence Pulsed Ionospheric Radar (VIPIR) located in Hualien, Taiwan (23.99° north latitude, 131.61° east longitude), which can produce 288 ionization maps every day. SA U-Net is a convolutional neural network developed for the purpose of image segmentation. Currently, we have collected normal data from August 2013 to June 2014, used SA U-Net to train and automatically process the data, and used the critical frequency and virtual height accuracy of each signal as a criterion to judge the performance of SA U-Net. Finally, we classify the training data and try to use the classified data to train the neural network model, hoping to improve the judgment success rate of the model.
    Appears in Collections:[Graduate Institute of Space Science] Department of Earth Sciences

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML48View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明