中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/94822
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42684248      在线人数 : 1482
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/94822


    题名: 新冠肺炎預後的人工智慧模型與單一醫學中心的肺癌篩檢成效;An artificial intelligence-based prognostic model of COVID-19 and a single-center experience of lung cancer screening
    作者: 吳智偉;Wu, Chih-Wei
    贡献者: 生醫科學與工程學系
    关键词: 新冠肺炎;人工智慧;胸部X光檢查;預後;死亡率;加護病房;COVID-19;Artificial intelligence;Chest X-rays;Prognosis;Mortality;Intensive care unit
    日期: 2024-07-09
    上传时间: 2024-10-09 15:32:24 (UTC+8)
    出版者: 國立中央大學
    摘要: 背景: 台灣缺乏關於第一波新冠肺炎疫情的研究。本篇研究新冠肺炎重症的死亡危險因子與建立胸部X光的人工智慧的判讀模型。
    方法: 本篇回溯性分析在西元二零二一年五月十五日至七月十五日之間在台北慈濟醫院的病歷資料。所有個案皆為插管使用呼吸器的病患。每一位病患都收錄四張胸部X光片,分別為第一張,插管前,插管後以及最嚴重。我們以移動網路第三版的方法來訓練人工智慧判讀模型,並且以交叉驗證方法來評估模型的表現。
    結果: 本篇總共收錄了六十四位病患。整體死亡率為百分之四十五。從症狀發生到插管平均為八日。使用升壓藥,嚴重的X光指標(BRIXIA評分系統)是死亡的危險因子。人工智慧模型有準確的死亡預測能力,其四類X光的預測準確度值分別為0.88,0.92,0.92,0.94。
    結論:呼吸衰竭而插管的新冠肺炎病患有高死亡率。使用升壓藥,嚴重的X光指標是死亡的危險因子。人工智慧模型有準確的死亡預測能力。
    ;Background: The data of the first episode of the COVID-19 pandemic in Taiwan is scarce. We researched the risk factors of death among mechanically-ventilated patients with COVID-19 in Taiwan during the first episode of COVID-19. In addition, we are inspired to create a new artificial-intelligence-based death prognostication model by utilization of chest X-ray.
    Method: We retrospectively extracted the medical data of patients with COVID-19 at Taipei Tzu Chi Hospital from May 15th to July 15th in 2021. We recruited patients who received invasive mechanical ventilation. The chest X-ray images of each recruited patient were assigned into four groups (first, before-intubation, post-intubation, and worst). The BRIXIA and percent opacification scores were reviewed by two pulmonologists. To set up a prognostication model, we used the MobilenetV3-Small model with “ImageNet” pretrained weights, followed by high Dropout regularization layers. We practiced the model with Five-Fold Cross-Validation to assess model efficacy.
    Result: We finally recruited sixty-four patients. The overall death rate was forty-five percent. The median days since symptom commencement to endotracheal intubation was eight. Age, inferior academic degree, occurrence of COVID-19 complications, and a more severe achievement of the worst chest X-ray were linked to a higher death risk. The accuracy of the first, pre-intubation, post-intubation, and worst chest X-ray by the artificial-intelligence model were 0.88, 0.92, 0.92, and 0.94 respectively.
    显示于类别:[生物醫學工程研究所 ] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML35检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明