中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/94852
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42684501      在线人数 : 1469
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/94852


    题名: 麻醉監測技術進步與優化病人安全_應用小波頻譜分析麻醉動態自主神經反應;Advancements in Anesthesia Techniques and Monitoring Technologies:Optimizing Patient Care and Safety
    作者: 王馨苡;Wang, Hsin-Yi
    贡献者: 生醫科學與工程學系
    关键词: 麻醉;小波頻譜分析;自主神經活性;光體積變化描記圖法;心律變異;propofol anesthesia;autonomic nervous system;heart rate variability;pulse photoplethysmography;wavelet-based spectral analysis
    日期: 2024-07-26
    上传时间: 2024-10-09 15:34:05 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究探討了Propofol誘導過程中的自主神經系統反應及其與鴉片類藥物的藥效協同作用,使用小波頻譜分析(wavelet-based spectral analysis)進行高時間解析率分析。結果顯示,在Propofol bolus誘導的早期階段,副交感神經活動顯著被抑制,隨後交感神經才開始抑制,這表明Propofol對自主神經系統的不同層面的影響具有明顯的時序性特徵,這些發現與臨床觀察到的生命徵象一致。小波分析技術使我們能夠準確擷取到這些快速且複雜的變化,突顯了其在理解麻醉誘導過程中動態自主神經反應的重要性。
    此外,還應用了基於機器學習的反應曲面模型來分析Propofol和鴉片類藥物對自主神經功能的協同藥效。高解析度的小波分析為反應曲面模型提供了詳細的數據,使我們能夠精準地分析這些藥物對自主神經系統的協同作用。結果顯示,Propofol與鴉片類藥物對自主神經功能抑制存在顯著的協同效應。這種協同作用的熱力學解釋表明,Propofol和鴉片類藥物的協同作用會提高麻醉深度,兩種藥物同時使用需要減少單一藥物的使用量,進而降低單一種高劑量藥物副作用風險,增強麻醉的安全性和有效性。
    為尋求安全麻醉誘導方式,我們進一步比較不同給藥方式造成的自主神經影響。比較標靶控制輸注與傳統一次手動推注給藥,發現標靶控制輸注在麻醉早期誘導期間提供更穩定的自主神經反應。相反,一次性地給予誘導劑量會導致較大的自主神經波動。本研究更進一步研究Propofol與鴉片類藥物合併使用對自主神經的反應曲面模型。應用了小波分析技術在準確擷取自主神經反應的高時間解析度在麻醉上的優勢,為臨床麻醉劑量的優化提供新的見解,有助於提高麻醉的安全性和效果。未來的研究應進一步探討Propofol與鴉片類藥物的最佳劑量組合用法,以實現更加個體化和精確的麻醉臨床處置。
    ;This study investigates the autonomic nervous system response during propofol induction and its pharmacodynamic synergy with opioids, combined with wavelet-based spectral analysis for high-resolution temporal assessment. Results demonstrate significant early-phase parasympathetic inhibition followed by sympathetic withdrawal during propofol bolus induction, indicating distinct temporal characteristics of propofol′s impact on the autonomic nervous system, consistent with clinical observations. Wavelet analysis accurately captures these rapid and complex changes, highlighting its importance in understanding dynamic autonomic responses during anesthesia induction.
    Additionally, a machine-learning-based response surface model was utilized to analyze the synergistic pharmacodynamic effects of propofol and opioids on ANS function. High-resolution wavelet-based spectral analysis provided detailed data, enabling precise determination of drug interactions on the ANS. The findings reveal significant synergistic effects between propofol and opioids, enhancing anesthesia depth while reducing individual drug dosage. Thermodynamic analysis supports that this synergy improves anesthesia safety and efficacy by minimizing side effects.
    Comparing target-controlled infusion and traditional manual bolus, target-controlled infusion showed fewer heart rate variability changes, providing more stable cardiovascular responses during early induction. In contrast, MB led to greater autonomic fluctuations, increased sympatho-vagal activity, decreased parasympathetic activity, and reduced peripheral sympathetic activity.
    This study not only explores dynamic changes in ANS responses during propofol induction but also provides a machine-learning-based response surface model for the synergistic effects of propofol and opioids on ANS function. wavelet-based spectral analysis′s ability to capture high-resolution temporal patterns of autonomic responses offers critical insights into optimizing anesthesia dosing, enhancing anesthesia safety, and efficacy in clinical practice. Future research should further investigate optimal dosage combinations of propofol and opioids for personalized anesthesia management and explore alternative induction methods or drug combinations to broaden clinical applicability.
    显示于类别:[生物醫學工程研究所 ] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML51检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明