中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/94864
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 43483388      Online Users : 1410
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/94864


    Title: 使用MFCC特徵提取技術結合LSTM 模型之股價預測—以特斯拉股價為例;Tesla Stock Price Prediction through MFCC Feature Extraction and LSTM Modeling
    Authors: 洪子鈞;Hong, Tzu-Chun
    Contributors: 企業管理學系
    Keywords: 股價預測;梅爾頻率倒譜係數;長短記憶網路;支持向量機;Stock Price Prediction;Mel Frequency Cepstral Coefficients;LSTM;SVM
    Date: 2024-07-11
    Issue Date: 2024-10-09 15:34:37 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 過去十幾年間,全球經濟快速成長,促進了金融業的繁榮發展。隨著生活水
    平的提高,股票市場不僅是企業籌集資金的主要途徑之一,也成為大眾普遍採用
    的投資方式。然而,由於股票市場具有隨機和非線性的特性,使得股價預測變得
    非常具有挑戰性。
    過往研究中,學者們已經探索了多種數值數據和文本數據的方法來預測股
    價。受此啟發,本研究提出了一種基於梅爾頻率倒譜係數(MFCC)的特徵提取
    方法,將股價歷史數據轉換為波形數據,並提取多維度的特徵向量,以提供一種
    新的股價預測方法,期望在準確性和可靠性方面取得顯著提升。
    本研究透過將MFCC 提取的特徵數據集切割為短期、中期和長期數據,以符
    合股價技術線圖中的周線、季線和月線趨勢,從而有助於模型在不同時間粒度下
    的訓練特徵,輸入LSTM 模型與SVM 模型進行訓練。最終,本研究的結果證明
    使用MFCC 提取多維特徵數據結合LSTM 模型,在股價預測領域具有一定的準確
    率,為未來的研究提供了一種新的特徵提取方法和方向。;In the past decade, the global economy has grown rapidly, promoting the prosperity of
    the financial industry. With the improvement of living standards, the stock market has
    not only become one of the main ways for companies to raise funds but also a common
    investment method for the public. However, due to the random and nonlinear nature of
    the stock market, stock price prediction has become very challenging.
    In previous studies, scholars have explored various methods of numerical data and
    text data to predict stock prices. Inspired by this, this study proposes a feature extraction
    method based on Mel Frequency Cepstral Coefficients (MFCC), converting historical
    stock price data into waveform data and extracting multi-dimensional feature vectors to
    provide a new method of stock price prediction, aiming to achieve significant improvement
    in accuracy and reliability.
    This study cuts the feature data set extracted by MFCC into short-term, medium-term,
    and long-term data to match the weekly, monthly, and quarterly trends in stock price technical
    charts, thereby assisting the model in training features at different time granularities,
    and inputs the LSTM model and SVM model for training. Ultimately, the results of this
    study demonstrate that using MFCC to extract multi-dimensional feature data combined
    with LSTM models has a certain accuracy in the field of stock price prediction, providing
    a new feature extraction method and direction for future research.
    Appears in Collections:[Graduate Institute of Business Administration] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML53View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明