本論文研究玻色子化在許溫格模型與1+1維時空帶電黑洞的應用。玻色子化是一種強大的數學技術,它將費米子理論簡化為玻色子理論,為複雜問題的解決提供了一個更容易理解的框架。首先,我們深入研究1+1維平面時空中費米子和玻色子的基本理論,建立費米子-玻色子字典。然後探索描述費米子與電磁場透過玻色子場相互作用的許溫格模型,並從平坦時空擴展到彎曲時空。這項擴展允許在帶電黑洞的背景下檢驗許溫格對的產生。我們從經典和半經典的角度進一步分析了玻色化的意義,特別關注帶電黑洞與許溫格效應之間的相互作用。這項研究旨在增強我們對萊斯納-諾德斯特洛姆黑洞事件視界附近的霍金輻射和電子對產生的理解,並強調玻色子化在理論物理學中的重要性。;This thesis investigates the application of bosonization to the Schwinger model and charged black holes in 1+1-dimensional spacetime. Bosonization, a powerful mathematical technique, simplifies fermionic theories into bosonic ones, providing a more accessible framework for complex problem-solving. Initially, we delve into the fundamental theories of fermions and bosons in flat 1+1-dimensional spacetime, establishing a fermion-boson dictionary. The Schwinger model, describing the interaction between fermions and an electromagnetic field via bosonic fields, is then explored, extending from flat to curved spacetime. This extension allows for the examination of Schwinger pair production in the context of charged black holes. The implications of bosonization are further analyzed from both classical and semiclassical perspectives, particularly focusing on the interaction between charged black holes and the Schwinger effect. The study aims to enhance our understanding of Hawking radiation and pair production near the event horizons of Reissner-Nordström black holes, highlighting the significance of bosonization in theoretical physics.