中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95288
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 43188694      Online Users : 733
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/95288


    Title: A Learning-Based Monocular Positioning with Variational Bayesian Extended Kalman Filter Integration
    Authors: 陳建宇;Chen, Jian-Yu
    Contributors: 通訊工程學系
    Keywords: 視覺定位;機器學習;Visual Positioning;Machine Learning
    Date: 2024-05-03
    Issue Date: 2024-10-09 16:37:50 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本文提出了一種新穎的整合方法,以應對基於神經網路學習的單眼定位所面臨的挑戰,該方法結合了絕對姿態回歸(Absolute Pose Regression, APR)和相對姿態回歸(Relative Pose Regression, RPR)的優勢。我們引入了一種在變分貝葉斯推斷框架內使用擴展卡爾曼濾波器(Extended Kalman Filter, EKF)來整合預測的絕對和相對姿態的理論一致策略(A Learning-Based Monocular Positioning with Variational Bayesian Extended Kalman Filter Integration, VKFPos)。本方法的一個重要機制是在訓練過程中考慮了姿態協方差,使我們的模型能夠有效地建模與每個預測姿態相關的不確定性。在 7-Scenes 和 Oxford RobotCar 等室內外數據集上的實驗結果顯示,我們的單影像定位方法在準確度上與最先進的方法相媲美。此外,在考慮軌跡時序時的定位方面,VKFPos 相對於現有方法展示了更高的準確度,室內數據集至少提高了 10%,而在具有挑戰性的室外數據集上至少提高了 42%。總之,VKFPos 提供了一個穩健可靠的解決方案,展示了其在各種環境和情境中的有效性。;This paper addresses the challenges in learning-based monocular positioning by proposing a novel integration approach that combines the strengths of Absolute Pose Regression (APR) and Relative Pose Regression (RPR).
    We introduce a theoretically consistent strategy for integrating predicted absolute and relative poses using the Extended Kalman Filter (EKF) within the framework of variational Bayesian inference, called VKFPos.
    An essential aspect of our method is the consideration of pose covariance during training, enabling our branches to effectively model the uncertainty associated with each predicted pose.
    Experimental results on both indoor and outdoor datasets, namely 7-Scenes and Oxford RobotCar, demonstrate that our single-shot method achieves comparable accuracy with state-of-the-art methods.
    Moreover, in temporal positioning, VKFPos demonstrates superior accuracy compared to existing methods, achieving a remarkable improvement of at least $10\%$ across indoor datasets and at least $42\%$ in challenging outdoor datasets.
    In summary, VKFPos offers a robust and reliable solution, demonstrating its effectiveness across diverse environments and scenarios.
    Appears in Collections:[Graduate Institute of Communication Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML36View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明