中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95402
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42694531      Online Users : 1433
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/95402


    Title: 使用最大概似估計每台機器的良率以識別批量生產系統中之低良品率機器;Per-Machine Yield Estimation Using Maximum Likelihood to Identify Low-Yield Machines on the Batch Production System
    Authors: 費利普;Adipraja, Philip Faster Eka
    Contributors: 資訊工程學系
    Keywords: 大量批量生產;期望最大化演算法;低良率機器;機器維護建議;每台機器良率估算;batch production;expectation-maximization algorithm;low-yield machine;machine maintenance suggestion;per-machine yield estimation
    Date: 2024-06-13
    Issue Date: 2024-10-09 16:46:36 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 偵測識別批量生產系統中的低良率機器對於最大限度地減少缺陷輸出至關重要。 然而,解決這個複雜問題的最新方法需要大量的專業知識、昂貴的資源或兩者的結合。 為了解決這個挑戰,我們提出了一種使用「Maximum Likelihood Estimation」和「Bootstrap Confidence Intervals」的簡單且經濟高效成本效益高的方法。此方法可以有效估計每台機器的良率,從而能夠精確定位低良率機器並產生優先順序清單以進行進一步調查。 擁有 50-500 台機器的製造商可以透過建立包含約 6-20 倍生產機器批次的資料集來實施此方法。 當滿足此條件時,系統可有效偵測識別最多 5 台低良率機器。 此外,估計的每台機器良率可用於預測各個生產批次的良率,為生產計劃和優化提供有價值的見解。;Identifying low-yield machines in batch production systems is crucial to minimize defective outputs. However, recent methods of addressing this complex issue require considerable expertise, expensive resources, or a combination of both. To solve this challenge, we propose a straightforward and cost-effective method using maximum likelihood estimation and bootstrap confidence intervals. This method efficiently estimates per-machine yield, enabling the pinpointing of low-yield machines and the generation of a prioritized list for further investigation. Manufacturers with 50–500 machines can implement this method by building a dataset containing approximately 6-20 times as many batches as production machines. When this condition is met, the system effectively identifies up to 5 low-yield machines. Additionally, the estimated per-machine yield can be used to predict the yield of individual production batches, providing valuable insights for production planning and optimization.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML22View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明