中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95425
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42685584      Online Users : 1591
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/95425


    Title: Attention-based STGNN with Long-Term Dependencies for Traffic Speed Prediction
    Authors: 戴俊祐;Tai, Chun-Yu
    Contributors: 資訊工程學系在職專班
    Keywords: 交通車速預測;STGNN;Transformer;Huber Loss
    Date: 2024-07-23
    Issue Date: 2024-10-09 16:49:44 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 隨著城市地區的發展,人口總數和密度不斷增加,
    導致都市化現象的形成。這使得交通網絡的規模擴大
    且結構變得複雜,進而加劇了交通擁塞問題。因此,
    準確預測交通速度對於城市交通網絡的管理和規劃至
    關重要。隨著現實道路複雜性的提高,如何整合空間
    和時間資訊以準確預測交通速度成為一個重要且具有
    挑戰性的研究課題。本研究提出了一種具有注意力機
    制的STGNN 模型,有效捕捉現實道路之間的複雜關
    係。我們使用 Huber 損失作為訓練損失函數以提高預
    測精度,並將 RMSNorm 用於替換Transformer 中的
    LayerNorm,以降低計算成本。最後,我們在兩個真實
    世界的交通速度資料集上對所提出的模型進行了實
    驗。實證研究結果顯示,我們的方法在交通速度預測
    方面優於當前領域中最先進的系統。;Urbanization, characterized by the continuous growth of population and density
    in urban areas, has led to the expansion and complexity of transportation networks,
    exacerbating traffic congestion. Accurate traffic speed prediction is crucial for ef-
    fective traffic network management and planning. As the complexity of real-world
    roads increases, how to integrate spatial and temporal information for accurate traf-
    fic speed prediction has become a challenging research task. This study proposes
    a novel approach by introducing a novel spatial-temporal STGNN-based model to
    enhance the accuracy of traffic speed prediction. By employing an attention-based
    STGNN, we effectively capture the complex relationships among road segments in
    real-world scenarios. We utilize Huber loss as the training loss function to improve
    prediction accuracy. Finally, we replace LayerNorm in Transformer with RMSNorm
    to reduce computational costs. Using two real-world traffic speed datasets, we eval-
    uated the proposed model. The experimental results demonstrate that our method
    achieves superior performance compared to state-of-the-art traffic speed prediction
    works.
    Appears in Collections:[Executive Master of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML62View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明