中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95502
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42716127      Online Users : 1431
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/95502


    Title: PWDFP:一種透過虛偽密碼來偵測釣魚網站的方式;PWDFP : Phishing Webpage Detector based on Fake Passwords
    Authors: 蔡秉峻;Tsai, Ping-Chun
    Contributors: 資訊工程學系
    Keywords: 釣魚網站;人工智慧;Phishing website;AI
    Date: 2024-07-18
    Issue Date: 2024-10-09 16:54:33 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 近年來,釣魚網站(Phishing Websites)已成為網路安全中的重大威脅,對個人和組織的資料安全造成了嚴重威脅。釣魚網站是指那些偽裝成合法網站,試圖從用戶那裡獲取敏感訊息,如帳戶密碼、信用卡號碼等,以進行非法活動的網站。它們通常利用欺騙性的手段,例如偽造的登入頁面和欺騙性的電子郵件,誘導用戶進行點擊和操作,從而竊取信息或安裝惡意軟體。
    為了應對這一問題,此系統提出了一種新的釣魚網站檢測方法,該方法結合了登入前和登入後畫面的分析,以提高釣魚網站偵測的準確性,若無法透過登入前後畫面來識別是否為釣魚網站,則先把登入前後的原始碼做篩選,保留需要的程式碼當成AI方法的輸入,再由AI去判斷是否為釣魚網站,本研究的目標是開發出一種全面而有效的釣魚網站檢測系統,幫助用戶識別和防止釣魚網站的攻擊,從而保護個人和組織的資料安全。
    ;In recent years, phishing websites have become a significant threat in the realm of cybersecurity, posing severe risks to the data security of individuals and organizations. Phishing websites are those that masquerade as legitimate sites, attempting to obtain sensitive information from users, such as account passwords and credit card numbers, for illicit activities. These sites often employ deceptive tactics, such as fake login pages and misleading emails, to trick users into clicking and interacting, thereby stealing information or installing malware.
    To address this issue, this system proposes a novel phishing website detection method that combines the analysis of pre-login and post-login screens to enhance the accuracy of phishing site detection. If it is not possible to identify a phishing site through the analysis of pre-login and post-login screens, the system will filter the source code before and after login, retaining the necessary code as input for an AI method, which will then determine whether the site is a phishing website. The objective of this research is to develop a comprehensive and effective phishing website detection system that helps users identify and prevent phishing attacks, thereby protecting the data security of individuals and organizations.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML48View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明