中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95534
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 43495216      Online Users : 1469
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/95534


    Title: A Novel Reinforced Contrastive Learning on Sentence Semantic Matching
    Authors: 蔡琇鈞;Tsai, Hsiu-Chun
    Contributors: 資訊管理學系
    Keywords: 自然語言處理;句子語義配對;對比學習;Natural Language Processing;Sentence Semantic Matching;Contrastive Learning
    Date: 2024-07-22
    Issue Date: 2024-10-09 16:59:40 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 句子語義配對是自然語言處理的重要任務之一,主要被廣泛應用在比較多個句子的語義並獲得他們的相似度以進行篩選或排名,常被用於搜尋引擎、問答系統,以找出最合適的回覆。過去的研究通常考慮不同的文字特徵萃取方法,卻忽略不同語義的句子會提供不同的交互知識,對於句子語義配對任務而言,相似的句子間仍會存在不同構面,傳統的方法中只能表明其相關性,不足以分出更適當的候選,導致系統表現有限。為解決這種難題,我們開發了一種新的強化對比學習(RCL)模型來產生語義特徵,該模型結合了交叉注意力機制和對比學習來輔助判斷相鄰特徵。我們也將 RCL 運用至真實世界的資料集中,並驗證其表現皆優於基準模型。;Sentence Semantic Matching (SSM) is a crucial component in natural language processing (NLP) tasks. It involves comparing the semantics of multiple sentences and ranking their similarities to identify the most similar one. Recently, contrastive learning has been proven to be beneficial in generating complex semantic features and promoting performance. Early research usually considers the different data construction, but ignoring the different semantic sentences will give variant knowledge of the interaction to sentence anchor, which might not be enough to capture the comprehensive observation of semantic features and lead to limited performance. We developed a new Reinforced Contrastive Learning (RCL) model to generate contextual features, which combined a cross-attention mechanism and contrastive learning to assist the adjacent feature. RCL was applied to numerous real-world datasets and it demonstrated state-of-the-art experimental results on the SSM task.
    Appears in Collections:[Graduate Institute of Information Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML71View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明