中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95537
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 43448136      Online Users : 1507
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/95537


    Title: Elastic-Trust Hybrid Federated Learning
    Authors: 朱泳霖;Chu, Yung-Lin
    Contributors: 資訊管理學系
    Keywords: 聯邦式學習;分散式聯邦式學習;混合式聯邦式學習;Federated Learning;Decentralized Federated Learning;Hybrid Federated Learning
    Date: 2024-07-22
    Issue Date: 2024-10-09 16:59:46 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 隨著機器學習的蓬勃發展,各組織正在收集大量數據以提高模型性能。然而,隨著對隱私保護的重視,各國政府紛紛立法以保護隱私資料,這無形中增加了組織的數據管理成本。聯邦式學習(FL)的設計初衷是將隱私資料保留在客戶端,減少集中管理敏感數據的風險和負擔。然而,以往的聯邦式學習研究在實踐中遇到了許多挑戰,例如資料異質性、特徵傳輸效率低下以及額外計算量需求等問題,這些都阻礙了聯邦式學習技術的廣泛應用和發展。在我們的新方法中,我們引入了一個包含信任機制和差異聚合策略的兩層聯邦式學習框架(ET-FL)。我們將這一方法應用於多個真實數據集,並驗證了效果。;With the flourishing of machine learning, organizations are gathering vast amounts of data to improve model performance. However, with increasing concerns about data privacy, governments have implemented laws to safeguard private data, thereby raising the cost for organizations. Federated Learning (FL) has been designed to keep private data on clients, reducing the burden of managing sensitive data. Previous research on FL has encountered challenges such as data heterogeneity, feature transmission efficiency, and extra computing power consumption. In our new approach, Elastic-Trust Hybrid Federated Learning (ET-FL), we have introduced a two-layer framework of FL with a Trust mechanism and a differential aggregation strategy. We have applied this methodology to several real datasets and have demonstrated promising experimental results.
    Appears in Collections:[Graduate Institute of Information Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML74View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明