我們對石墨烯奈米帶(AGNRs)和異質結構的拓撲態(Topological States)在庫倫阻塞區域內的熱電性能進行了理論研究。採用包括局部內態和局部間態庫倫相互作用的雙局部態哈伯德模型,我們分析了這些材料的拓撲態。我們的探索集中在有限 AGNRs 的電導率(Ge)、塞貝克系數(S)和電子熱導率(ke)。有趣的是,我們發現在低溫下,塞貝克系數對多體效應的敏感性比電導率更大。此外,我們觀察到高溫下優化的塞貝克系數受到電子庫倫相互作用的影響較小,與 Ge 和 ke 相比。這項研究為我們理解庫倫阻塞效應對 AGNRs 和異質結構中拓撲態的電荷傳輸提供了寶貴的見解。;We conducted theoretical investigations into the thermoelectric properties of topological states in armchair graphene nanoribbons (AGNRs) and heterostructures within the Coulomb blockade regime. Employing a two-site Hubbard model that incorporates intra-localized state and inter-localized state Coulomb interactions, we analyzed the topological states (TS) of these materials. Our exploration focused on the electrical conductance (Ge), Seebeck coefficient (S), and electronic thermal conductance (ke) of finite AGNRs. Intriguingly, we discovered that at low temperatures, the Seebeck coefficient demonstrates greater sensitivity to many-body effects compared to conductance. Furthermore, we observed that the optimized Seebeck coefficient at high temperatures is less affected by electron Coulomb interactions in comparison to Ge and ke. This investigation provides valuable insights into understanding the Coulomb blockade effect on the charge transport of topological states in AGNRs and heterostructures.