中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95693
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42701607      Online Users : 1385
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/95693


    Title: 基於抗混疊演算法和注意力機制的指靜脈認證技術;Finger Vein Authentication Technique using Anti-Aliasing Algorithm and Attention Mechanisms
    Authors: 陳功毅;Nghi, Tran Cong
    Contributors: 資訊工程學系
    Keywords: 指靜脈識別;深度學習;抗鋸齒;注意力機制;生物安全;Finger Vein Authentication;Deep Learning;Anti-Aliasing;Attention Mechanisms;Biometric Security
    Date: 2024-07-30
    Issue Date: 2024-10-09 17:09:40 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文研究了指靜脈識別系統,該系統採用了一種安全的生物特徵識別方法,由於其固有的防偽性和非侵入式的獲取過程,使其成為可靠的選擇。論文引入了一種優化的指靜脈識別方法,該方法利用深度學習,著重於抗鋸齒技術和注意力機制的整合,以提高識別精度。
    研究分為三個主要部分。首先,我們開發了一種針對指靜脈識別的卷積神經網絡(CNN)架構,其中包含了旨在減少失真並保留靜脈圖案細節的新型抗鋸齒濾波器。其次,我們整合了注意力機制,特別是通道和空間注意力,這些機制選擇性地增強了對於靜脈圖案辨識至關重要的特徵。這種雙重方法同時解決了由於鋸齒現象而造成的細節損失和在復雜圖像中突出相關特徵的挑戰。
    在多個基準數據集上進行的廣泛實驗證明了所提出方法相比傳統指靜脈識別系統的優越性。我們的結果顯示了在識別精度和對各種圖像質量問題的魯棒性方面的改進,確認了在深度學習模型中結合抗鋸齒技術和注意力機制的有效性。本工作不僅推進了指靜脈識別技術的發展,還提供了可能適用於其他生物安全領域的洞見。
    ;This thesis is a study of the finger vein authentication system, utilizing a secure biometric method due to its intrinsic resistance to forgery and its non-intrusive acquisition process. It introduces an optimized approach for finger vein authentication using deep learning, focusing on the integration of anti-aliasing techniques and attention mechanisms to enhance authentication accuracy.
    The research is divided into three main parts. First, we develop a convolutional neural network (CNN) architecture tailored for finger vein recognition, incorporating novel anti-aliasing filters designed to mitigate distortion and preserve vein pattern details. Second, we integrate attention mechanisms, specifically channel and spatial attention, which selectively enhance features relevant for vein pattern discrimination. This dual approach addresses both the loss of detail due to aliasing and the challenge of emphasizing relevant features in complex images.
    Extensive experiments conducted on several benchmark datasets demonstrate the superiority of the proposed method over traditional finger vein authentication systems. Our results show improvements in recognition accuracy and robustness against various image quality issues, confirming the effectiveness of combining anti-aliasing techniques and attention mechanisms in deep learning models. This work not only advances the state of finger vein authentication but also offers insights that could be applied to other areas of biometric security.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML29View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明