English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42667770      線上人數 : 2084
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95742


    題名: 時間序列與神經網路複合模型之日照時數分析;Time Series and Neural Network Hybrid Models for Solar Radiation Analysis
    作者: 丁奎尹;Ting, Kuei-Yin
    貢獻者: 數學系
    關鍵詞: 太陽能;時間序列模型;日照時數;混合模型
    日期: 2024-07-22
    上傳時間: 2024-10-09 17:14:02 (UTC+8)
    出版者: 國立中央大學
    摘要: 為了降低全球暖化與氣候變遷對社會帶來的衝擊,各國政府積極發展可再生能源電 力系統,其中以太陽能發展較為成熟,其可及性和儲電效率相較其他再生能源更有優勢。 與太陽能電廠產電量最相關的自然資源就是日照時數,因此本研究主要目的為探討日照 時數的預測模型,比較日照預測模型的配適與預測表現,以利太陽能電廠未來的規劃與 價值評估。資料方面,除了日照時數本身,也考量其他氣象因子與日照時數的相關度, 並對資料進行季節性分解。訓練模型方面,採用三個類型的多種模型:第一類時間序列 模型選擇 AR(1)、ARMA(1,1)、ARMAX(1,1)和 GARCH(1,1)模型,第二類機器學習模型 選擇線性迴歸、迴歸樹和 LSTM 模型,第三類混合模型就是將時間序列模型與機器學習 模型混合,像是 AR(1)- LSTM 和 ARMAX(1,1)-LSTM 的混合模型。研究結果發現,取去 除季節性後的資料,訓練出的模型預測誤差相較保留季節性趨勢資料來的小,多種模型 中,含有季節性分解的 ARMAX(1,1)-LSTM 混合模型預測誤差最小,其次預測誤差最小 的是 ARMAX(1,1)模型,這兩種模型都有將其他氣象因子作為特徵變數訓練模型,說明 加入更多特徵變數資料使模型能更準確進行預測。整體而言,混合模型進行預測比單一 模型預測表現更為優異。;To reduce the impact of global warming and climate impact on society, governments worldwide are activity developing renewable energy power systems. Among these, solar energy is relatively mature and offers advantages in accessibility and storage efficiency compared to other kind of renewable energy. The most closely relate natural resource to the power generation of solar power plants is sunshine duration. Therefore, the main objective of this study is to explore prediction models for sunshine duration, compare the fitting and prediction performance of different models, and thereby facilitate the planning and value assessment of solar power stations.
    Regarding the data, besides sunshine duration itself, other meteorological factors correlated with sunshine duration are also considered, and perform seasonal decomposition on the data. For model training, three types of models are used: Time Series models including AR(1), ARMA(1,1), ARMAX(1,1), and GARCH(1,1) models; Machine Learning models including Linear Regression, Regression Tree, and LSTM models; and hybrid models that combine Time Series model and Machine Learning model, such as AR(1)-LSTM and ARMAX(1,1)-LSTM hybrid models.
    The study found that models trained on residual data after removing seasonality had smaller prediction errors compared to those retaining seasonal trend data. Among the various models, the ARMAX(1,1)-LSTM hybrid model with seasonal decomposition had the smallest prediction error, followed by the ARMAX(1,1) model. Both models used other meteorological factors as feature variables, indicating that incorporating more feature variables enables more accurate predictions. Overall, hybrid models perform better in prediction compared to single models.
    顯示於類別:[數學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML54檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明