English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42687520      線上人數 : 1441
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95757


    題名: 以BO-LGBM機制與XAI為基礎之網路惡意流量偵測研究;Network Malicious Traffic Detection Based on BO-LGBM Mechanism with XAI
    作者: 張炫誠;Chang, Hsuan-Cheng
    貢獻者: 資訊工程學系
    關鍵詞: 貝葉斯演算法;流量分類;入侵檢測系統;模型優化;特徵分析;Bayesian Optimization;Traffic Classification;Intrusion Detection System;Model Optimization;Feature Analysis
    日期: 2024-08-08
    上傳時間: 2024-10-09 17:15:08 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著現今網路技術蓬勃發展,促使智慧型設備以及物聯網裝置大幅提升,因此在網路安全(Cybersecurity)的重要性也隨之提升。為了有效抵禦網路攻擊(Cyberattack),現今使用人工智慧(Artificial Intelligence, AI)模型來實現入侵檢測系統(Intrusion Detection System, IDS),用來偵測網路惡意流量,由於AI模型具有複雜的超參數空間,若只依賴人工方式手動調整超參數,可能會造成付出的成本變得高昂,且較不容易找出最佳的超參數配置。
    本論文為了解決不易找出模型的最佳超參數配置的問題,提出(Bayesian Optimization - Light Gradient Boosting Machine, BO-LGBM)機制,用來建立網路惡意流量分類模型,此機制利用貝葉斯演算法(Bayesian Optimization, BO)來找出(Light Gradient Boosting Machine, LightGBM)模型的最佳超參數配置,從而提升模型在流量分類的準確度。本論文採用IoT20資料集作為模型的輸入,實驗結果中於網路惡意流量分類有著98.89%的F1-score,相較人工手動方式設置超參數的LightGBM模型可以提升5.33%。此外BO-LGBM相比於Random Forest、Bagging、CatBoost以及CNN都具有更高的準確度,而且在模型大小和預測時間上更為輕量和快速。本論文還採用eXplainable Artificial Intelligence(XAI)技術對模型的輸入特徵進行分析,並取得各攻擊類別的特徵重要性,再通過XAI分析出的結果來降低模型輸入維度,以降低模型的負擔。在LightGBM模型特徵刪除結果中可以在幾乎不影響模型準確度的情況下,降低10.5%的預測時間與提升11.8%的Throughput,另外在降低 17.18% 的預測時間和提升 20.43% 的 Throughput 的情況下,模型仍可保有 96.18 %的 F1-Score。;With the rapid development of current internet technologies, the proliferation of smart devices and Internet of Things (IoT) devices has significantly increased. Consequently, the importance of cybersecurity has also risen. To effectively defend against cyberattacks, Artificial Intelligence (AI) models are now employed to implement Intrusion Detection Systems (IDS) to detect network malicious traffic. Due to the complex hyperparameter space of AI models, relying solely on manual adjustments can be costly and make it difficult to find the optimal hyperparameter configuration.
    This paper addresses the challenge of identifying the optimal hyperparameter configuration for models by proposing a Bayesian Optimization - Light Gradient Boosting Machine (BO-LGBM) mechanism. This mechanism leverages Bayesian Optimization (BO) to determine the best hyperparameter settings for the Light Gradient Boosting Machine (LightGBM) model, thereby improving the model′s accuracy in traffic classification. The IoT20 dataset is used as the input for the model in this paper. Experimental results show that the BO-LGBM achieves an F1-score of 98.89% in network malicious traffic classification, representing a 5.33% improvement over manually configured LightGBM models. Additionally, BO-LGBM demonstrates higher accuracy compared to Random Forest, Bagging, CatBoost, and CNN, and is more lightweight and faster in terms of model size and prediction time. This paper also employs eXplainable Artificial Intelligence (XAI) techniques to analyze the input features of the model, obtaining feature importance for each attack category. The XAI analysis results are then used to reduce the dimensionality of the model′s input, thus decreasing the model′s burden. The feature removal results in the LightGBM model show that it can reduce prediction time by 10.5% and increase throughput by 11.8% without significantly affecting the model′s accuracy. Furthermore, when reducing prediction time by 17.18% and increasing throughput by 20.43%, the model can still maintain an F1-Score of 96.18%.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML24檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明