博碩士論文 985202075 詳細資訊

本論文永久網址:   


以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.119.166.124
姓名 郭志宏(Chi-Hong Kuo)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 單眼視覺的行人偵測與追蹤
(Monocular-vision pedestrian detection and tracking)
相關論文
★ 適用於大面積及場景轉換的視訊錯誤隱藏法★ 虛擬觸覺系統中的力回饋修正與展現
★ 多頻譜衛星影像融合與紅外線影像合成★ 腹腔鏡膽囊切除手術模擬系統
★ 飛行模擬系統中的動態載入式多重解析度地形模塑★ 以凌波為基礎的多重解析度地形模塑與貼圖
★ 多重解析度光流分析與深度計算★ 體積守恆的變形模塑應用於腹腔鏡手術模擬
★ 互動式多重解析度模型編輯技術★ 以小波轉換為基礎的多重解析度邊線追蹤技術(Wavelet-based multiresolution edge tracking for edge detection)
★ 基於二次式誤差及屬性準則的多重解析度模塑★ 以整數小波轉換及灰色理論為基礎的漸進式影像壓縮
★ 建立在動態載入多重解析度地形模塑的戰術模擬★ 以多階分割的空間關係做人臉偵測與特徵擷取
★ 以小波轉換為基礎的影像浮水印與壓縮★ 外觀守恆及視點相關的多重解析度模塑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著經濟的成長,機動車輛越來越多,交通事故也越來越頻繁;因此發展車輛防撞系統就變得更加的重要。特別是於市區的交通狀況,由於行人走動相當頻繁,因此行人偵測是一個重要的議題。在本研究中,我們提出了一個使用單眼相機的行人偵測與追蹤系統,並應用於複雜的市區環境中,以避免行人遭受到車輛撞擊。
在行人偵測中,我們先計算影像中每個像素的梯度,並且利用內插的方式將各種不同的梯度向量量化為九個固定方向的向量,將其累積以形成 Histograms of oriented gradients ( HOG )特徵,以做為偵測行人的特徵。當我們取出欲偵測區域的 HOG 特徵時,首先使用較為快速的 AdaBoost 分類器來篩選輸入的資料做篩選,通過篩選的區域將會由精準的 SVM 分類器來進行分類判斷是否為行人。最後為了減少因外在因素使得分類器失效對系統的影響程度,我們使用 camshift 的方式對偵測的結果做追蹤,主動去找尋偵測失敗的行人。最後整體系統能夠於背景單純的情況下達到 89% 的偵測率;於複雜背景的情況下可以達到 70% 的偵測率。
摘要(英) Flowing the growth of economics, the amount of vehicles is rapidly increased and then the traffic accidents and consequentially piled up. Thus the development of vehicle collision avoidance system becomes more and more important. In urban areas, there are lots of pedestrians, bicycles, and motorcycles, thus the detection of the pedestrian-like bikes is the most important task. In this study, we proposed a pedestrian detection and tracking system using monocular camera to help drivers avoiding pedestrian traffic collision.
In the proposed system, we first compute the gradients of image pixels; then decompose every gradient to two adjacent two directions of nine fixed directions. Third, we construct Histograms of oriented gradient (HOG) features from the processed gradients to detect pedestrians. We have constructed thousands of HOG features; we use an AdaBoost strong classifier composed of sixteen weak classifiers to filter out the background and non-pedestrian features, and then use a precise SVM classifier to detection pedestrians based on the remain features. Finally, we use camshift method to find the failed detected pedestrians to achieve a higher detection rate. Overall system’s detection rate can achieve 89% in the simple background case and 70% in the complex background case.
關鍵字(中) ★ 行人偵測
★ 特徵辨識
★ 機器學習
★ 影像處理
★ 輔助駕駛系統
關鍵字(英) ★ pedestrian detection
★ pattern recognition
★ AdaBoost
★ SVM
★ tracking
★ HOG
論文目次 摘要 ................................................................................................... -ii-
Abstract ................................................................................................. -iii-
致謝 .................................................................................................. -iv-
目錄 ................................................................................................. -v-
圖表目錄 ................................................................................................. -vii-
表格目錄 ................................................................................................. -ix-
第一章 緒論 .................................................................................................. 1
1.1 研究動機 .......................................................................................... 1
1.2 系統概述 .......................................................................................... 1
1.3 論文架構 .......................................................................................... 2
第二章 相關研究 .......................................................................................... 5
2.1以HOG為特徵的行人偵測 .............................................................. 5
2.2 以選取特徵來增進 HOG 特徵的辨識能力 .................................. 8
2.3. HOG結合LBP特徵 ....................................................................... 11
第三章 HOG特徵 ....................................................................................... 14
3.1 HOG統計方式 ............................................................................... 14
3.2 減輕邊緣效應 ................................................................................ 17
第四章 ROI選取方式 ................................................................................ 19
4.1 地平線與攝影機高度 .................................................................... 19
4.2 Integral image .................................................................................. 22
4.3 快速ROI特徵建立 ......................................................................... 23
第五章 分類器 ............................................................................................ 24
5.1 AdaBoost .......................................................................................... 24
5.1.1 AdaBoost簡介 .................................................................... 24
5.1.2 弱分類器 ............................................................................ 25
5.1.3 階層式AdaBoost ................................................................. 26
5.1.4 AdaBoost訓練 .................................................................... 27
5.2 SVM .................................................................................................. 29
5.2.1 SVM簡介 ............................................................................ 29
5.2.2 SVM訓練 ............................................................................ 31
第六章 追蹤 ................................................................................................ 32
6.1 行人區域群聚 ................................................................................ 32
6.2 反投影 ............................................................................................ 33
6.3 Camshift .......................................................................................... 37
6.4 追蹤結果 ........................................................................................ 38
第七章 實驗結果 ........................................................................................ 40
7.1 實驗設備與架設環境 .................................................................... 40
7.2 預先實驗與結果展示 .................................................................... 41
7.3 不同狀況下的比較 ........................................................................ 47
第八章 未來展望 ........................................................................................ 54
參考文獻 ...................................................................................................... 57
參考文獻 [1] Agarwal, S., A. Awan, and D. Roth, 'Learning to detect objects in images via a sparse, part-based representation,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol.26, no.11, pp.1475-1490, 2004.
[2] Ahonen, T., A. Hadid, and M. Pietikinen, 'Face recognition with local binary patterns,' in proc. 8th European Conf. on Computer Vision, Prague, Czech Republic, May.11-14, 2004, pp.469-481.
[3] Ahonen, T., A. Hadid, and M. Pietikinen, 'Face description with local binary patterns: application to face recognition,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol.28, no.12, pp.2037-3041, 2006.
[4] Alonso, I. P., D. F. Llorca, and M. ?. Sotelo, 'Combination of feature extraction methods for SVM pedestrian detection,' IEEE Trans. Intelligent Transportation System, vol.8, no.2, pp.292-307, 2007.
[5] An, T.-K. and M.-H. Kim, 'A new diverse AdaBoost classifier,' in Proc. Int. Conf. Artificial Intelligence and Computational Intelligence, Sanya, China, Oct.23-24, 2010, pp.359-363.
[6] Bertozzi, M., A. Broggi, M. Del Rose, M. Felisa, A. Rakotomamonjy, and F. Suard, 'A pedestrian detector using histograms of oriented gradients and a support vector machine classifier,' in Proc. IEEE Conf. Intelligent Transportation Systems, Seattle, Washington, Sept.30-Oct.3, 2007, pp.143-148.
[7] Cao, X.-B., H. Qiao, and J. Keane, 'A low-cost pedestrian-detection system with a single optical camera,' IEEE Trans. Intelligent Transportation Systems, vol.9, no.1, pp.58-67, 2008.
[8] Cheng, Y., 'Mean shift, mode seeking, and clustering,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol.17, no.8, pp.790-799, 1995.
[9] Dahua, L. and T. Xiaoou, 'Quality-driven face occlusion detection and recovery,' in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Minneapolis, Minnesota, June 18-23, 2007, pp.1-7.
[10] Dalad, N. and B. Triggs, 'Histograms of oriented gradients for human detection,' in Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, San Diego, USA, June 20-26, 2005, pp.886-893.
[11] Enzweiler, M., P. Kanter, and D.M. Gavrila, 'Monocular pedestrian recognition using motion parallax,' in Proc. IEEE Conf. Intelligent Vehicles Symposium, Eindhoven, The Netherlands, June 4-6, 2008, pp.792-797.
[12] Enzweiler, M. and D.M. Gavrila, 'Monocular pedestrian detection: survey and experiments,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol.31, no.12, pp.2179-2195, 2008.
[13] Freund, Y. and R. E. Schapire, 'A decision-theoretic generalization of on-line learning and an application to boosting,' in proc. European Conf. on Computational Learning Theory, Barcelona, Spain, Mar.13-15, 1995, pp.23-37.
[14] He, D.-C. and L. Wang, 'Texture unit, texture spectrum, and texture analysis,' IEEE Trans. Geoscience and Remote Sensing, vol.28, no.4, pp.509-512, 1990.
[15] Ke, Y. and R. Sukthankar, 'PCA-SIFT: a more distinctive representation for local image descriptors,' in Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 27-July 2, 2004, Washington, DC, pp.66-75.
[16] Kobayashi, T., A. Hidaka, and T. Kurita, 'Selection of histograms of oriented gradients features for pedestrian detection,' in Proc.14th Int. Conf. Neural Information Processing, Kitakyushu, Japan, Nov.13-16, 2007, pp.598-607.
[17] Lampert, C. H., M. B. Blaschko, and T. Hofmann, 'Beyond sliding windows: object localization by efficient subwindow search,' in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Anchorage, Alaska, June 24-26, 2008, pp.1-8.
[18] Leibe, B., E. Seemann, and B. Schiele, 'Pedestrian detection in crowded scenes,' in Proc. IEEE Conf. Computer Vision and Pattern Recognition, San Diego, CA, June 20-26, 2005, pp.878-885.
[19] Mohan, A., C. Papageorgiou, and T. Poggio, 'Example-based object detection in images by components,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol.23, no.4 pp.349-361, 2001.
[20] Nishida, K. and T. Kurita, 'Boosting soft-margin SVM with feature selection for pedestrian detection,' in Proc. Int. Workshop on Multiple Classifier Systems, Seaside, CA, June.13-15, 2005, vol.13, pp.22-31.
[21] Suard, F., A. Rakotomamonjy, A. Bensrhair, and A. Broggi, 'Pedestrian detection using infrared images and histograms of oriented gradients,' in Proc. IEEE Conf. Intelligent Vehicles Symposium, Tokyo, Japan, June 13-15, 2006, pp.206-212.
[22] Tanaka, K., T. Kurita, F. Meyer, L. Berthouze, and T. Kawabe, 'Stepwise feature selection by cross validation for egg-based brain computer Interface,' in Proc. Int. Joint Conf. on Neural Networks, Vancouver, Canada, July 16-21, 2006, pp.9422–9427.
[23] Vapnik, V.N., The Nature of Statistical Learning Theory, Springer, Berlin, 1995.
[24] Viola, P. and M. J. Jones, "Robust real-time object detection," Int. Journal of Computer Vision, vol.57, no.2, pp.37-154, 2001.
[25] Viola, P., M. J. Jones, and D. Snow, "Detecting pedestrians using patterns of motion and appearance," in Proc. IEEE Int. Conf. Computer Vision, Nice, France, Oct.13-16, 2003, pp.734-741.
[26] Viola, P. and M. J. Jones, "Robust real-time face detection," Int. Journal of Computer Vision, vol.57 no.2, pp.137-154, 2004.
[27] Wang, X., T. X. Han, and S. Yan, "An HOG-LBP human detector with partial occlusion handling," in proc. IEEE 12th Int. Conf. Computer Vision, Kyoto, Japan, Sept.29-Oct.2, 2009, pp.32-39.
[28] Wu, B. and R. Nevatia, "Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors," in Proc. IEEE Int. Conf. on Computer Vision, Beijing, China, Oct.17-20, 2005, pp.90-97.
[29] Wu, B. and R. Nevatia, "Tracking of multiple, partially occluded humans based on static body part detection," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, New York, NY, June 17-22, 2006, pp.951-958.
[30] Zhu, Q., A. Shai, M.-C. Yeh, and K.-T. Cheng, "Fast human detection using a cascade of histograms of oriented gradients," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, New York, NY, June 17-22, 2006, pp.1491-1498.
指導教授 曾定章(Din-Chang Tseng) 審核日期 2011-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明