參考文獻 |
[1] T. Takahashi. Debris flow. Ann. Rev. Fluid Mech., 13:57–77, 1981.
[2] H. Itoh, J. Takahama, M. Takahashi, and K. Miyamoto. Hazard estimation
of the possible pyroclastic flow disasters using numerical simulation
related to the 1994 activity at Merapi Volcano. J. Volcanol. Geotherm. Res.,
100:503–516, 2000.
[3] K. J. Shou and C.F. Wang. Analysis of the Chiufengershan landslide
triggered by the 1999 Chi-Chi earthquake in Taiwan. Eng. Geo., 68:237–250,
2003.
[4] E. B. Pitman and L. Le. A two-fluid model for avalanche and debris flows.
Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 363:1573–1601, 2005.
[5] K. C. Chen and Y. C. Tai. Volume-weighted mixture theory of granular
materials. Continuum Mech. Thermodyn., 19:457–474, 2008.
[6] C. S. Campbell and C. E. Brennen. Chute flows of granular material:
some computer simulations. J. Appl. Mech., 52:172–178, 1985.
[7] L. E. Silbert, D. Ertas, G. S. Grest, T. C. Halsey, D. Levine, and S. J.
Plimpton. Granular flow down an inclined plane: Bagnold scaling and
rheology. Phys. Rev. E, 64:051302, 2001.
[8] E. Azanza, F. Chevoir, and P. Moucheront. Experimental study of collisional
granular flows down an inclined plane. J. Fluid Mech., 400:199–227,
1999.
[9] Y. Zhang and M. Reese. The influence of the drag force due to the
interstitial gas on granular flows down a chute. Int. J. Multiph. Flow, 26:2049–
2072, 2000.
[10] M. A. Goodman and S. C. Cowin. A continuum theory for granular materials.
Arch. Ration. Mech. Anal., 44:249–266, 1972.
[11] C. Fang. Modeling dry granular mass flows as elasto-viscohypoplastic continua
with microstructural effects. II. Numerical simulations of benchmark
flow problems. Acta Mech., 197:191–209, 2008.
[12] D. M. Hanes and O. R. Walton. Simulation and physical measurements
of glass spheres flowing down a bumpy incline. Powder Technol., 109:133–144,
2000.
[13] O. Pouliquen. Scaling laws in ganular flows down rough inclined planes.
Phys. Fluids, 11:542–548, 1999.
[14] N. P. Kruyt and W. J. T. Verel. Experimental and theoretical study of
rapid flows of cohesionless granular materials down inclined chutes. Powder
Technol., 73:109–115, 1992.
[15] H. Ahn, C. E. Brennen, and R. H.Sabersky. Measurements of velocity,
velocity fluctuation, density and stresses in chute flows of granular materials.
J. Appl. Mech., 58:792–803, 1991.
[16] M. Nakagawa, S. A. Altobelli, A. Caprihan, E. Fukushima, and E. K.
Jeong. Non-invasive measurements of granular flows by magnetic resonance
imaging. Exp. Fluids, 16:54–60, 1993.
[17] T. Kawaguchi, K. Tsutsumi, and Y. Tsuji. MRI measurement of granular
motion in a rotating drum. Part. Part. Syst. Charact., 23:266–271, 2006.
[18] M. D. Mantle, A. J. Sederman, L. F. Gladden, J. M. Huntley, T. W.
Martin, R. D. Wildman, and M. D. Shattuck. MRI investigations of
particle motion within a three-dimensional vibro-fluidized granular bed.
Powder Technol., 179:164–169, 2008.
[19] Y. L. Ding, R. Forster, J. P. K. Seville, and D. J. Paker. Segregation
of granular flow in the transverse plane of a rolling mode rotating drum.
Powder Technol., 28:635–663, 2002.
[20] S. Y. Lim, J. F. Davidson, R. N. Forster, D. J. Paker, D. M. Scott, and
J. P. K. Seville. Avalanching of granular material in a horizontal slowly
rotating cylinder: PEPT studies. Powder Technol., 138:25–30, 2003.
[21] W. Bi, R. Delannay, P. Richard, and A. Valance. Experimental study
two-dimensional, monodisperse, frictional-collisional granular flows down
an inclined chute. Phys. Fluids, 18:123302, 2006.
85
[22] S. P. Pudasaini, K. Hutter, S. S. Hsiau, S.C. Tai, Y. Wang, and
R. Katzenbach. Rapid flow of dry granular materials down inclined chutes
impinging on rigid wall. Phys. Fluids, 19:053302, 2007.
[23] S. B. Savage and K. Hutter. The motion of a finite mass of granular
material down a rough incline. J. Fluid Mech., 199:177–215, 1989.
[24] J. M. N. T. Gray, M. Wieland, and K. Hutter. Gravity-driven free
surface flow of granular avalanches over complex basal topography. Proc
Royal Soc. A, 455:1841–1874, 1999.
[25] E. B. Pitman and L. Le. A two-fluid model for avalanche and debris flows.
Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci.., 363:1573–1601, 2005.
[26] M. Pelanti, F. Bouchut, and A. Mangeney. A roe-type scheme for twophase
shallow granular flows over variable topography. ESAIM-Math. Model.
Numer. Anal.-Model. Math. Anal. Numer., 42:851–885, 2008.
[27] D. Salciarini, C. Tamagnini, and P. Coversini. Discrete element modeling
of debris-avalanche impact on earthfill barriers. Phys. Chem. Earth, 35:172–
181, 2010.
[28] H. Teufelsbauer, Y. Wang, M. C. Wang, and W. Wu. Flow-obstacle
interaction in rapid granular avalanches: DEM simulation and comparsion
with experiment. Granul. Matter, 11:209–220, 2009.
[29] K. Hutter, M. Siegel, S. B. Savage, and Y. Nohguchi. Two-dimensional
spreading of a granular avalanche down an inclined plane. Part I: Theory.
Acta Mech., 100:37–68, 1993.
[30] S. P. Pudasaini and K. Hutter. Rapid shear flows of dru granular massis
down curved and twisted channels. J. Fluid Mech., 495:193–208, 2003.
[31] A. K. Patra, A. C. Bauer, C. C. Nichita, E. B. Pitman, M. F. Sheridan,
M. Bursik, B. Rupp, A. Webber, A. J. Stinton, L. M. Namikawa, and
C. S. Renschler. Parallel adaptive numerical simulation of dry avalanches
over natural terrain. J. Volcanol. Geotherm. Res., 139:1–21, 2005.
[32] Y. C. Tai and C. Y. Kuo. A new model of granular flows over general
topography with erosion and deposition. Acta Mech., 199:71–96, 2008.
[33] R. M. Iverson. The physics of debris flows. Rev. Geophys., 35:245–296, 1997.
[34] R. M. Iverson and R. P. Denlinger. Flow of variably fluidized granular
masses across three-dimensional terrain. 1. Coulomb mixture theory. J.
Geophys. Res., 106:537–552, 2001.
[35] Y. Wang and K. Hutter. A constitutive theory of fluid-saturated granular
materials and its application in gravitational flows. Rheol. Acta., 38(3):214–
223, 1999.
[36] K. Hutter and L. Schneider. Important aspects in the formulation of
solid-fluid debris-flow models. Part I. Thermodynamic implications. Continuum
Mech. Thermodyn., 22:363–390, 2010.
[37] K. Hutter and L. Schneider. Important aspects in the formulation of
solid-fluid debris-flow models. Part II. Constitutive modelling. Continuum
Mech. Thermodyn., 22:391–411, 2010.
[38] K. C. Chen and Y. C. Tai. Volume-Weighted mixture theory for granular
materials. Contin. Mech. Thermodyn, 19:457–474, 2008.
[39] S. P. Pudasaini, S. S. Hsiau, Y. Wang, and K. Hutter. Velocity measurements
in dry granular avalanches using particle image velocimetry technique
and comparison with theoretical prediction. Phys. Fluids, 17:093301,
2005.
[40] R. J. Adrian. Image Shifting Technique to Resolve Directional Ambiguity
in Double-Pulsed Velocimetry. Appl. Opt., 25:3855–3858, 1986.
[41] S. M. Nedderman, U. Tuzun, S. B. Savage, and G. T. Houlsby. The flow
of granular materials—I: Discharge rates from hoppers. Chem. Eng. Sci.,
37:1597–1609, 1982.
[42] Y. C. Tai and Y. C. Lin. A focused view of the behavior of granular flows
down a confined inclined chute into the horizontal run-out zone. Phys.
Fluid, 20:123302, 2008.
[43] H. Capart, D. L. Young, and Y. Zech. Voronoı imaging methods for the
measurement of granular flows. Exp. Fluids, 32:121–135, 2002.
[44] C. Truesdell. Rational Thermodynamics. Springer Verlag, New York, 1984.
[45] R. M. Iverson. Differential equations governing slip-induced pore-pressure
fluctuations in a water-saturated granular medium. Mathematical Geology,
25:1027–1048, 1993.
[46] B. J. Glasser, I.G. Kevrekidis, and S. Sundaresan. One- and twodimensional
travelling wave solutions in gas-fluidized beds. J. Fluid Mech.,
306:183–221, 1996.
[47] J. F. Richardson and W.N. Zaki. Sedimentation and fluidization: part I.
Trans. Inst. Chem. Eng., 32:35–53, 1954.
[48] R. Jackson. The dynamics of fluidized particles. Cambridge University Press, 2000.
[49] S. B. Savage and K. Hutter. The dynamics of granular material from
initiation to runout. Part I: Analysis. Acta Mechanica, 86:201–223, 1991.
[50] M. Princevas, H. J. S. Fernando, and C.D. Whiteman. Turbulent entrainment
into natural gravity-driven flows. J. Fluid Mech., 533:259–268,
2005.
[51] M. Princevas, J. Buhler, and A. J. Schleiss. Mass-based depth and
velocity scales for gravity currents and related flows. Environ. Fluid Mech.,
9:369–387, 2009.
[52] M. Princevas, J. Buhler, and A. J. Schleiss. Alternative depth-averaged
models for gravity currents and free shear flows. Environ. Fluid Mech.,
10:369–386, 2010.
[53] P. G. Baines. Mixing in flows down gentle slopes into stratified environments.
J. Fluid Mech., 443:237–270, 2001.
[54] P. G. Baines. Mixing regimes for the flow of dense fluid down slopes into
stratified environments. J. Fluid Mech., 538:245–267, 2005.
[55] H. J. S. Fernando. Turbulent mixing in stratified fluid. Annu. Rev. Fluid
Mech., 23:455–493, 1991.
[56] J. Vallet, B. Turnbull, S. Joly, and F. Dufour. Observations on powder
snow avalanches using videogrammetry. Cold Reg. Sci. Tech., 39:153–159, 2004.
[57] R. Greve, T. Koch, and K. Hutter. Unconfined flow of granular
avalanches along a partly curved chute. I. Theory. Proc. R. Soc. A-Math.
Phys. Eng. Sci., 445:399–1413, 1994.
[58] Y. C. Tai and Y. C. Lin. A focused view of the behavior of granular flows
down a confined inclined chute into the horizontal run-out zone. Phys.
Fluids, 20:123302, 2008.
[59] L. E. Silbert, J.W. Landry, and G. S. Grest. Granular flow down a
rough inclined plane: transition between thin and thick piles. Phys. Fluids,
15:1–10, 2003.
[60] K. F. Liu and C.C. Mei. Roll waves on a layer of a muddy fluid flowing
down a gentle slope-A Bingham model. Phys. Fluids, 6:2577–2590, 1994.
[61] B. Zelinski, E. Goles, and M. Markus. Maximization of granular outflow
by oblique exits and by obstacles. Phys. Fluids, 21:031701, 2009.
[62] S. Tewari, B. Tithi, A. Ferguson, and B. Chakraborty. Growing length
scale in gravity-driven dense granular flow. Phys. Rev. E, 79:011303, 2009.
[63] F. J. Pugh and K. C. Wilson. Velocity and concentration distributions in
sheet flow above plane beds. J. Hydraulic Eng., 125:117–125, 1999.
[64] G. Jiang and E. Tadmor. Non-oscillatory central schemes for multidimensional
hyperbolic conservation laws. SIAM J. Sci. Comput., 19:1892–1917,
1997.
[65] Y. C. Tai, S. Noelle, J.M. N. T. Gray, and K. Hutter. Shock-capturing
and front tracking methods for granular avalanches. J. Comput. Phys.,
175:269–301, 2002.
[66] S. P. Pudasaini and K. Hutter. Avalanche dynamics. Springer Verlag,
Berlin/Heidelberg, 2007.
[67] R. J. LeVeque. Finite volumes methods for hyperbolic problems. Cambridge Univ.
Press, 2002.
[68] R. J. LeVeque. Numerical methods for conservation laws. Birkhauser Verlag Press,
2006.
[69] N. Goutal and F. Maurel. Proceedings of the 2nd workshop on dambreak
wave simulation. Technical Report HE-43/97/016/B, Direction des ´Etudes
et Recherches, EDF, 1997.
[70] M. Castro, J. M. Gallardo, and C. Par´es. High order finite volume
schemes based on reconstruction of states for solving hyperbolic systems
with nonconservative products. Applications to shallow-water systems.
Math. Comput., 75(255):1103–1134, 2006.
[71] J. G. Zhou, D. M. Mingham, and D. M. Ingram. The surface gradient
method for the treatment of source terms in the shallow-water equation.
J. Comput. Phys., 168:1–25, 2001.
[72] G. Gottardi and M. Venutelli. Central scheme for two-dimensional dambreak
flow simulation. Adv. Water Resour., 27:259–268, 2004.
[73] C. Biscarini, S. D. Francesco, and P. manciola. CFD modelling approach
for dam break flow studies. Hydrol. Earth Syst. Sci., 14:705–718, 2010.
[74] G. F. Lin, J. S. Lai, and W. D. Guo. Performance of high-resolution TVD
schemes for 1D dam-break simulations. J. Chin. Inst. Eng., 28(5):771–782,
2005.
[75] M. Quecedo, M. Pastor, M. I. Herreros, J. A. F. Merodo., and
Q. Zhang. Comparsion of two mathematical models for solving the dam
break problem using the FEM method. Comput. Methods Appl. Mech. Engrg.,
194:3984–4005, 2005.
[76] K. Hutter, Y. Wang, and S. Pudasaini. The Savage-Hutter avalanche
model: how far can it be Pushed? Phil. Trans. R. Soc. A, 363:1507–1528,
2005.
|