博碩士論文 992204013 詳細資訊

本論文永久網址:   


以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.15.140.40
姓名 鄭鈺儒(Yu-ju Cheng)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 探討酵母菌Histidyl-tRNA synthetase的特性
(Characterization of yeast Histidyl-tRNA synthetase.)
相關論文
★ Kineosphaera limosa 菌株中 phaC 基因之序列分析★ 剪力和組織蛋白去乙醯酶在動靜脈廔管失效扮演的角色
★ Classification of powdery mildews on ornamental plants in northern Taiwan★ 秀麗隱桿線蟲線粒體AlaRS通過非傳統模式識別T型無臂tRNAAla
★ Bacillus thuringiensis contains two prolyl-tRNA synthetases of different origins★ Recognition of tRNA His isoacceptors by human HisRS isoforms
★ Functional replacement of yeast nuclear and mitochondrial RNase P by a protein-only RNase P★ Functional characterization of a noncanonical ProRS in Toxoplasma gondii
★ tRNA aminoacylation by a naturally occurring mini-AlaRS★ Functional Repurposing of C-Ala Domains
★ Recognition of a non-canonical tRNAAla by a non-canonical alanyl-tRNA synthetase★ 探討Alanyl-tRNA synthetase的演化及專一性
★ 酵母菌valyl-tRNA synthetase附加區段的 生物功能之探討★ 探討酵母菌glycyl-tRNA合成酵素的非傳統生物功能
★ 探討酵母菌Valyl-tRNA synthetase的生化活性★ 酵母菌轉譯起始機制的研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在酵母菌中具有兩套aminoacyl-tRNA synthetases (aaRSs),一套在細胞質作用,另一套在粒線體作用。然而酵母菌中,只有一個histidyl-tRNA synthetase (HisRS) 基因HTS1,利用兩個不同的起始密碼轉譯出兩個酵素異構型。在本論文中我們研究不同種的酵母菌HTS1基因,結果顯示所有酵母菌都是使用相似的轉譯機制,利用一個基因轉譯出在細胞質和粒線體作用的HisRS。在E. coli tRNAHis 上G-1:C73是一個重要的決定基,而在酵母菌細胞質和粒線體tRNAHis相對位置分別是G-1:A73和G-1:C73。實驗結果顯示E. coli HisRS無法取代酵母菌細胞質HisRS的活性,可是如果將E. coli HisRS送入粒線體之後,就可以互補酵母菌 HTS1剔除株粒線體的功能。此外,我們發現酵母菌 S. cerevisiae HisRS的胺基端具有一段附加區段,L. elongisporous HisRS中間則有一段插入區段,這兩個區段主要影響酵素對tRNA的KM,對於酵素的kcat則只有輕微的影響,因此,我們猜測此附加區段及插入區段可能用來增加整個酵素對tRNA的親和力。
摘要(英) In yeast, there are two distinct sets of aminoacyl-tRNA synthetases (aaRSs), one localized in the cytoplasm and the other in mitochondria. Paradoxically, there is only one histidyl-tRNA synthetase (HisRS) gene, HTS1, in the yeast nuclear genome. As it turns out, this gene encodes both cytoplasmic and mitochondrial forms of HisRS through alternative initiation of translation from two in-frame initiator codons. We herein report that a dual-functional phenotype was conserved in the HTS1 genes of other yeast species. While E. coli tRNAHis species contained a G-1:C73 base pair as the major determinant, yeast cytosolic and mitochondrial tRNAHis isoacceptors respectively contained G-1:A73 and G-1:C73 at the same position. Even though E. coli HisRS failed to substitute for the cytoplasmic activity of yeast HTS1, the bacterial enzyme, upon being imported into mitochondria, could rescue growth defect of a S. cerevisiae HTS1 knockout strain. In addition, we found that the N-terminal appended domain of S. cerevisiae HisRS and an insertion domain of L. elogisporous HisRS significantly contributed to KM of the enzyme for tRNAHis, but had relatively minor effect on the kcat. Our study suggests that the appended domain or insertion domain of yeast HisRS acts as an auxiliary tRNA-binding domain to improve the overall tRNA-binding affinity of the enzyme.
關鍵字(中) ★ 酵母菌
★ 蛋白質合成
★ 胺醯化
關鍵字(英) ★ histidyl-tRNA synthetase
★ aminoacylation
論文目次 目 錄
中文摘要 I
英文摘要 II
誌 謝 III
目 錄 IV
圖 目 錄 VII
表 目 錄 IX
縮寫檢索表 X
第一章 緒論 - 1 -
1.1 Aminoacyl-tRNA synthetases (aaRSs)的簡介 - 1 -
1.1.1 aaRS的功能 - 1 -
1.1.2 aaRSs 的分類 - 2 -
1.2 原核生物與真核生物蛋白質轉譯方式 - 2 -
1.2.1原核生物與真核生物蛋白質合成 - 2 -
1.2.2 真核細胞aaRS轉譯例外 - 3 -
1.3 Histidyl-tRNA synthetase (HisRS)的簡介 - 4 -
1.3.1 HisRS的生化特性 - 4 -
1.3.2 HTS1基因在酵母菌中的表現 - 5 -
1.4 tRNAHis的辨認位置 - 6 -
1.5 酵母菌的附加區段 - 7 -
1.6 研究目的 - 8 -
第二章 材料與方法 - 10 -
2.1 菌株、載體及培養基 - 10 -
2.2 大腸桿菌勝任細胞的製備與轉型作用 - 11 -
2.2.1大腸桿菌勝任細胞的製備 - 11 -
2.2.2大腸桿菌勝任細胞的轉型作用 (transformation) - 12 -
2.3 酵母菌勝任細胞的製備與轉型作用 - 13 -
2.3.1酵母菌勝任細胞的製備 - 13 -
2.3.2酵母菌勝任細胞的轉型作用 - 13 -
2.4 質體之選殖 - 14 -
2.5 點突變 (Site-directed Mutagenesis) - 15 -
2.6 功能性互補試驗 (Complementation)─測試細胞質功能 - 16 -
2.7 功能性互補試驗 (Complementation)─測試粒腺體功能 - 17 -
2.8 蛋白質製備 (Protein preparation) - 19 -
2.9 SDS-PAGE之蛋白質分子量分析 - 20 -
2.10 西方點墨法 (Western Blotting) - 21 -
2.11 Cycleheximide-chase assay之蛋白質穩定度測試 - 22 -
2.12 免疫螢光分析 (immunofluorescence analysis) - 23 -
2.13 酵母菌融合蛋白質的表現和純化 - 23 -
2.14 aaRS胺醯化反應 (aminoacylation assay) - 27 -
第三章 結果 - 29 -
3.1 不同酵母菌之間HisRS的相互關係。 - 29 -
3.2 不同物種HTS1的轉譯機制 - 30 -
3.3 原核生物和真核生物之間HisRS的相互關係。 - 34 -
3.4 原核生物和真核生物之間HisRS生化活性差異 。 - 37 -
3.5 HisRS附加區段對酵母菌的重要性 。 - 38 -
3.6 HisRS附加區段對蛋白質穩定度的影響 。 - 41 -
3.7 HisRS附加區段對酵素生化活性的影響 。 - 42 -
第四章 討論 - 44 -
4.1 酵母菌HTS1基因的表現 - 44 -
4.2 tRNAHis和HisRS的相互關係 - 46 -
4.3 酵母菌HisRS附加區段的特性 - 48 -
參考文獻 - 52 -
圖表 - 58 -
參考文獻 Allen, J. D., and Parsons S. M. (1977) Properties of the 59-terminus of tRNAHis: Kinetics of polynucleotide kinase catalyzed exchange and effect of dephosphorylation on the aminoacylation reaction. Biochem. Biophys. Res. Commun. 78, 28–35.
Burbaum, J. J., and Schimmel, P. (1991) Structural relationships and the classification of aminoacyl-tRNA Synthetases. J. Biol. Chem. 266, 16965-16968.
Carter, C. W., Jr. (1993) Cognition, mechanism, and evolutionary relationships in
aminoacyl-tRNA synthetases. Annu. Rev. Biochem. 62, 715-748.
Cavadini P., Gakh O., and Isaya G. (2002) Protein import and processing reconstituted with isolated rat liver mitochondria and recombinant mitochondrial processing peptidase. Methods. 26, 298-306.
Chang, C. P., Lin, G., Chen, S. J., Chiu, W. C., Chen, W. H., and Wang C. C. (2008) Promoting the formation of an active synthetase/tRNA complex by a nonspecific tRNA-binding domain. J. Biol. Chem. 283, 30699-30706.
Chang C. P., Lin G., Chen S. J., Chiu W. C., Chen W. H., and Wang C. C. (2008) Promoting the formation of an active synthetase/tRNA complex by a nonspecific tRNA-binding domain. J. Biol. Chem. 45, 30699-30706.
Chang, K. J., and Wang, C. C. (2004) Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J. Biol. Chem. 279: 13778-13785.
Chatton, B., Walter, P., Ebel, J.-P., Lacroute, F., and Fasiolo, F. (1988) The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J. Biol. Chem. 263, 52-57.
Chiu, M. I., Mason, T. L., and Fink, G. R. (1992) HTS1 encodes both the cytoplasmic and mitochondrial histidyl-tRNA synthetase of Saccharomyces cerevisiae: mutations alter the specificity of compartmentation. Genetics 132, 987-1001.
Chiu W. C., Chang C. P., and Wang C. C. (2009) Evolutionary basis of converting a bacterial tRNA synthetase into a yeast cytoplasmic or mitochondrial enzyme. J. Biol. Chem. 36. 23954-23960.
Francklyn C., and Schimmel P. (1990) Enzymatic aminoacylation of an eight-base-pair microhelix with histidine. Proc. Natl. Acad. Sci. USA. 21, 8655-8659.
Freedman, R., Gibson, B., Donovan, D., Biemann, K., Eisenbeis, S., Parker, J., and Schimmel P. (1985) Primary structure of histidine-tRNA synthetase and characterization of hisS transcripts. J. Biol. Chem. 260, 10063-10068.
Freist, W., Verhey, J. F., Ruhlmann, A., Gauss, D. H., and Arnez, J. G. (1999) Histidyl-tRNA synthetase. Biol. Chem. 380, 623-646.
Fromant, M., Plateau, P., and Blanquet, S. (2000) Function of the extra 59-phosphate carried by histidine tRNA. Biochemistry 39, 4062–4067.
Giege, R., Sissler, M., and Florentz, C. (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 26, 5017-5035.
Gu, W., Jackman, J. E., Lohan, A. J., Gray, M. W., and Phizicky, E. M. (2003) tRNAHis maturation: an essential yeast protein catalyzes addition of a guanine nucleotide to the 5’’ end of tRNAHis. Genes Dev. 17, 2889-2901.
Himeno H., Hasegawa T., Ueda T., Watanabe K., Miura K., and Shimizu M. (1989) Role of the extra G-C pair at the end of the acceptor stem of tRNA(His) in aminoacylation. Nucleic Acids Res. 19, 7855-7863.
Heinemann, I. U., Nakamura, A., O’’Donoghue, P., Eiler, D., and Soll D. (2012) tRNAHis-guanylyltransferase establishes tRNAHis identity. Nucleic Acids Res. 40, 333-44.
Liu C., Gamper H., Shtivelband S., Hauenstein S., Perona J. J., and Hou Y. M. (2007) Kinetic quality control of anticodon recognition by a eukaryotic aminoacyl-tRNA synthetase. J. Mol. Biol. 4, 1063-1078.
Lund, E., and Dahlberg, J. (1998) Proofreading and aminoacylation of tRNAs before export from the nucleus. Science 282, 2082-2085.
Martinis, S. A., Plateau, P., Cavarelli, J., and Florentz, C. (1999) Aminoacyl-tRNA synthetases: a family of expanding functions. EMBO J. 18, 4591-4596.
Martinis, S. A., and Schimmel P. (1993) Microhelix aminoacylation by a Class I tRNA synthetase. J. Biol. Chem. 268, 6069-6072.
McClain, W. H. (1993) Rules that govern tRNA identity in protein synthesis. J. Mol. Biol. 234, 257-280.
Mirande, M. (1991) Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog. Nucleic Acid Res. Mol. Biol. 40, 95-142.
Mirande, M. (1991) Aminoacyl-tRNA synthetases and DNA replication. Molecular mimicry between RNAII and tRNA(Lys). FEBS Lett. 283, 1-3.
Mireau, H., Lancelin, D., and Small, I. D. (1996) The same Arabidopsis gene encodes both cytosolic and mitochondrial alanyl-tRNA synthetases. Plant Cell. 8, 1027-1039.
Mor,l M., and Marchfelder, A. (2001) The final cut. The importance of tRNA 3’’-processing. EMBO Rep. 2, 17-20.
Nameki, N., Asahara, H., Shimizu, M., Okada, N., and Himeno H. (1995) Identity elements of Saccharomyces cerevisiae tRNA(His). Nucleic Acids Res. 23, 389-394.
Natsoulis, G., Hilger, F., and Fink, G. R. (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46, 235-243.
Parker, J., and Fishman S. E. (1979) Mapping hisS, the structural gene for histidyl-transfer ribonucleic acid synthetase, in Escherichia coli. J. Bacteriol. 138, 264-267.
Paschen S. A., and Neupert W. (2001) Protein import into mitochondria. IUBMB Life. 52, 101-112.
Ribas de Pouplana, L. and Schimmel, P. (2001) Two classes of tRNA synthetases suggested by sterically compatible1 dockings on tRNA acceptor Stem. Cell 104, 191-193.
Ripmaster, T. L., Shiba, K., and Schimmel, P. (1995) Wide cross-species aminoacyl-tRNA synthetase replacement in vivo: yeast cytoplasmic alanine enzyme replaced by human polymyositis serum antigen. Proc. Natl. Acad. Sci. U. S. A. 92, 4932-4936.
Rosen, A. E., Brooks, B. S., Guth, E., Francklyn, C. S., and Musier-Forsyth, K. (2006) Evolutionary conservation of a functionally important backbone phosphate group critical for aminoacylation of histidine tRNAs. RNA 12, 1315-1322.
Rosen, A. E., and Musier-Forsyth, K. (2004) Recognition of G-1:C73 atomic groups by Escherichia coli histidyl-tRNA synthetase. J. Am. Chem. Soc. 126, 64–65.
Rudinger J., Florentz C., ang Giege R. (1994) Histidylation by yeast HisRS of tRNA or tRNA-like structure relies on residues -1 and 73 but is dependent on the RNA context. Nucleic Acids Res. 23, 5031-5037.
Sarkar, S., Azad, A. K., and Hopper, A. K. (1999) Nuclear tRNA aminoacylation and its role in nuclear export of endogenous tRNAs in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 96, 14366-14371.
Schimmel, P. (1987) Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu. Rev. Biochem. 56, 125-158.
Schimmel, P. R., and Soll, D. (1979) Aminoacyl-tRNA synthetases: general features
and recognition of transfer RNAs. Annu. Rev. Biochem. 48, 601-648.
Schimmel, P., and Wang, C. C. (1999) Getting tRNA synthetases into the nucleus. Trends Biochem. Sci. 24, 127-128.
Sherman F., Stewart J. W., and Schweingruber A. M. (1980) Mutants of yeast initiating translation of iso-1-cytochrome c within a region spanning 37 nucleotides. Cell 1, 215-222.
Simos, G., Segref, A., Fasiolo, F., Hellmuth, K., Shevchenko, A., Mann, M., and Hurt, E. C. (1996) The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. EMBO J. 15, 5437-5448.
Souciet, G., Menand, B., Ovesna, J., Cosset, A., Dietrich, A., and Wintz, H. (1999) Characterization of two bifunctional Arabdopsis thaliana genes coding for mitochondrial and cytosolic forms of valyl-tRNA synthetase and threonyl-tRNA synthetase by alternative use of two in-frame AUGs. Eur. J. Biochem. 266, 848-854.
Sprinzl, M., and Vassilenko, K. S. (2005) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 33, 139-140.
Su, D., Lieberman, A., Lang, B. F., Simonovic, M., Soll, D., and Ling, J. (2011) An unusual tRNAThr derived from tRNAHis reassigns in yeast mitochondria the CUN codons to threonine. Nucleic Acids Res. 39, 4866-4874.
Tang, H. L., Yeh, L. S., Chen, N. K., Ripmaster, T., Schimmel, P., and Wang, C. C. (2004) Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. J. Biol. Chem. 279, 49656-49663.
Wang, C. C., and Schimmel, P. (1999) Species barrier to RNA recognition overcome with nonspecific RNA binding domains. J. Biol. Chem. 274, 16508-16512.
Yan, W., and Francklyn, C. (1994) Cytosine 73 is a discriminator nucleotide in vivo for histidyl-tRNA in Escherichia coli. J Biol Chem. 269, 10022-10027.
郭亦亦 (2008) 酵母菌HTS1基因轉譯起始機制之研究。中央大學碩士論文。
指導教授 王健家(Chien-Chia Wang) 審核日期 2012-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明