博碩士論文 995203022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.140.198.12
姓名 何欣芸(Hsin-Yun Ho)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 單載波分頻通道估測基於調適性頻域滑動式視窗
(Channel Estimation Based on Adaptive Frequency Domain Windowing for SC-FDM Communications)
相關論文
★ 運用SIFT特徵進行光學影像目標識別★ 語音關鍵詞辨識擷取系統
★ 適用於筆記型電腦之WiMAX天線研究★ 應用於凱氏天線X頻段之低雜訊放大器設計
★ 適用於802.11a/b/g WLAN USB dongle曲折型單極天線設計改良★ 應用於行動裝置上的雙頻(GPS/BT)天線
★ SDH設備單體潛伏性障礙效能分析與維運技術★ 無風扇嵌入式觸控液晶平板系統小型化之設計
★ 自動化RFID海關通關系統設計★ 發展軟體演算實現線性調頻連續波雷達測距系統之設計
★ 近場通訊之智慧倉儲管理★ 在Android 平台上實現NFC 室內定位
★ Android應用程式開發之電子化設備巡檢★ 鏈路預算估測預期台灣衛星通訊的發展
★ 在中上衰落通道中分集結合技術之二階統計特性★ 先進長程演進系統中載波聚合技術的初始同步
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,無線通訊系統所需的傳輸資料量越來越高,所需的頻寬也越來越大,在有限的頻寬下,利用這些資源達到最大的傳輸量。由於正交分頻多工具備高速率資料傳輸的能力,加上能有效對抗頻率選擇性衰減,因此廣泛運用在通訊系統中。但正交分頻多工的功率峰均值比過高,且無法抵抗頻率偏移。
單載波分頻多工傳送端使用單一載波調變,架構類似於正交分頻多工,因此效能也相似。不同的是,單載波分頻多工為在正交分頻多工前加上離散傅立葉轉換前置編碼的系統。這方法可以降低功率峰均值比,且有效增加傳送功率效率。因此3GPP LTE使用單載波分頻多工為上傳架構。然而,單載波分頻多工像正交分頻多工一樣,容易對震盪器不穩及通道都卜勒效應產生的頻率偏移很敏感,造成子載波間干擾而降低系統效能。
為了增進系統的效能,通道估測技術是必須的。實際上,在單載波分頻多工存取系統上用於通道估測的引導信號 (pilot signals),在傳送端,每隔固定週期時間插入資料符元間。其中一種引導信號的擺放方式為塊狀信號編排(block-type pilot arrangement)。基於此種擺放方式,此篇論文中我們考慮了系統複雜度不高的狀況下,利用了最小平方的通道估測法作改善,為一種最小平方滑動視窗估測技術,來估測通道變化。再進一步根據不同SNR的情況,在接收端選擇最佳的最小平方滑動視窗的大小。與傳統在頻域上最小平方估測和最小均方估測技術和其他較低複雜度的通道估測技術作比較。提出的改善方法在系統複雜度不高的情況下,效能也能做進一步的改善。
摘要(英) Nowadays, wireless communications systems transmit data required for increasing the amount of required bandwidth is also growing. In the limited bandwidth, the use of resources achieve maximum throughput. Because the orthogonal frequency division multiplexing is provided with high data rate and effective against frequency selective fading, it is widely used in communication systems. However, the peak to average power ratio (PAPR) of the orthogonal frequency division multiplexing (OFDM) is too high and cannot resist the frequency offset.
Single-carrier frequency division multiplexing (SC-FDM) is using a single carrier modulation. Orthogonal frequency division multiplexing architecture is similar to single carrier, so the performance is also similar. The difference is that single carrier frequency division in orthogonal frequency division multiplexing added before discrete Fourier transform pre-coding system. The method can reduce the peak to average power ratio, and effectively increase the transmission power efficiency. Therefore, 3GPP LTE uses single-carrier frequency division multiplexing architecture for the uplink. However, the single-carrier frequency division multiplexing is like the orthogonal frequency division multiplexing, and the oscillator is easy to instability. Doppler frequency shift effect produced is very sensitive, resulting in ICI and reduce system performance.
In order to improve system performance, channel estimation is required. In fact, the signal (pilot signals) is used in the single-carrier frequency division multiple access system for channel estimation. In transmission, every symbol insert into a fixed cycle or time. One of the pilot signal display arrangement (block-type pilot arrangement). Based on this arrangement, we use the least-squares channel estimation method for improvement, which is a sliding window least squares channel estimation techniques to estimate the channel states in this paper. Further according to the different signal to noise ratio (SNR), we estimate the SNR in the receiver and select the optimal sliding windowing length for comparison with the traditional frequency domain least squares estimation and minimum mean squares estimation channel estimation techniques and other low complexity channel estimation techniques. The proposed method performance can improve performance and the computational complexity is not too high.
關鍵字(中) ★ 頻域最小平方估測
★ 頻域最小均方估測
★ 單載波分頻
★ 通道估測
★ 正交分頻多工
★ 視窗
關鍵字(英) ★ Window
★ Channel estimation
★ FD-MMSE
★ FD-LS
★ OFDM
★ SC-FDM
論文目次 中文摘要….………………………….….………………………………………i
英文摘要….………………………….….……………………………………iii
致謝….………………………….….…………………………………………v
圖目錄...…………………………………………………………………ix
表目錄...……………………………….………………………………………xi
第一章 導論 1
1.1 背景與演進 1
1.2 動機 2
1.3 論文大綱 2
第二章 無限移動通道統計特性描述 3
2.1 前言 3
2.2 多重路徑成因 3
2.3 多重路徑類型 4
2.4 大尺度衰減 5
2.4.1 對數距離路徑損失路徑 5
2.4.2 對數高斯遮蔽模型 5
2.5 小尺度衰減 6
2.5.1 都卜勒擴展 7
2.5.2 多重路徑通道與接收端訊號 8
2.5.3 通道的相關函數 8
2.5.4 通道的同調頻寬 9
2.5.5 通道的同調時間 10
2.5.6-1 頻率平緩衰減及頻率選擇性衰減 11
2.5.6-2 緩慢衰減及快速衰減 12
2.6 多重路徑衰減通道的模型 13
2.7 瑞雷衰減通道的模型 14
2.7.1 基頻通道數學模型演進 15
2.7.2 Jakes’ model的模擬 16
2.8 高斯白雜訊通道 18
第三章 系統描述 21
3.1 前言 21
3.2 下行正交分頻 21
3.2.1 OFDM的概念 21
3.2.2 連續時域OFDM訊號 22
3.2.3 正交特性 23
3.2.4 離散時域OFDM訊號 24
3.2.5 保護區間 25
3.2.6 OFDM架構圖 25
3.3 上行單載波分頻 26
3.3.1 單載波分頻系統 27
3.3.2 子載波映射 27
3.4 長期演進與時槽結構 28
3.4.1 框架結構類型 28
3.4.2 時槽結構與資源網格 30
第四章 通道估測與雜訊變異數估測技術 32
4.1 引導訊號安排 32
4.2 上行LTE參考訊號 35
4.3 引導訊號的技術 35
4.3.1 頻域最小平方引導訊號通道估測 35
4.3.2 頻域線性最小均方引導訊號通道估測 37
4.3.3 頻域最小平方調適性滑動引導訊號通道估測 39
4.3.4 DFT-Based 通道估測的方法 44
4.3.5 降噪通道估測的方法 47
4.4 雜訊變異數估測技術 48
4.4.1 低階雜訊變異數估測技術 48
4.4.2 視窗DFT-based雜訊變異數估測技術 48
第五章 模擬與討論. 52
5.1 系統與通道參數 52
5.2 均方誤差效能與windowing比較 55
5.3 DFT-based雜訊變異數估測效能比較 58
5.4不同通道估測方法均方誤差比較 59
5.5 不同通道估測方法位元錯誤率比較 62
第六章 結論 66
參考文獻 68
附錄 71
參考文獻 [1] http://zh.wikipedia.org/wiki/E-UTRA
[2] H. Ekstrom, A. Furuskar, J. Karlsson, M. Meyer, S. Parkvall, J. Torsner, and M. Wahlqvist, “Technical solutions for the 3G long-term evolution” IEEE Communications Mag., vol: 44 , no. 3 , Page(s): 38 - 45 , Mar.2006.
[3] J. J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and P. O. Borjesson,“On channel estimation in OFDMA systems,” in Proc. VTC’ 95 Spring, vol. 2, pp. 815-819, Jul. 1995.
[4] http://www2.cna.edu.tw/961213/month/cnadata/mm/23-1/23-1-6.htm
[5] Sklar, B., Digital Communications: Fundamental and Applications, 2nd ed. Prentice Hall, Upper Saddle River, NJ, 2001.
[6] Cox, D. C., Murray, R. R., and Norris, A., 800 MHz Attenuation Measured in and around Suburban Houses, AT&T Bell Laboratory Technical Journal, vol.673, no. 6, July-August 1984.
[7] Theodore S. Rappaport, Wireless Communications Principles and Practice, 2nd ed. Prentice Hall, Upper Saddle River, NJ, 2002.
[8] J.G. Proakis, H. Arslan. Digital Communications,5th ed. New York: McGraw-Hill,2008
[9] W.C. Jakes, Microwave Mobile Communications. New York: Wiley, 1974.
[10] Yunxin Li and Xiaojing Huang, “The simulation of independent Rayleigh Faders,” IEEE Trans. Commun., vol. 50, no. 9, pp. 1503-1514, Sep. 2002.
[11] Hongku Kang , Wooncheol Hwang and Kiseon Kim “Performance analysis of the OFDM system with one tap equalizer against the two-ray multipath channel” IEEE Commun., vol. 1, pp. 45-48, Sep 1999.
[12] W.Li, and A.Hu,“Analyze of the interchannel interference of OFDM in time-varying channel,”in Proc. ICNNSP , vol.1, pp.845-847 , Dec.2003.
[13] R. V. Nee, R. Prasad. OFDM for Wireless Multimedia Communications. Boston : Artech House, 2000.
[14] Blahut,R.E., “Fast Algorithms for Digital Signal Processing. Reading,”MA:Addison-Wesley, 1985.
[15] W.Y. Zou and Y. Wu.,“COFDM:An overview,”IEEE Trans. Broadc., vol.41 no.1, pp1-8, March 1995.
[16] J.-S. Lin, H.-Y. Chen and J.-C. Lin, “Channel estimation technique assisted by postfixed PN sequences with zero padding for wireless OFDM communications,” IEICE Trans. Commun., vol. E91-B, no. 4, pp. 1095-1102, Apr. 2008.
[17] 3GPP, TS 36.211 (V8.5.0), “Physical Channels and Modulation,” Mar. 2009.
[18] 3GPP, TS 36.104 (V8.5.0), “Base Station (BS) radio transmission and reception,” Mar. 2009.
[19] A. Sohl, T. Frank, and A. Klein, “Channel Estimation for DFT-precoded OFDMA with blockwise and interleaved subcarrier allocation.” in Proc. International OFDM Workshop 2006, Hamburg, Germany, August 2006.
[20] Hyung G. Myung, David J. Goodman,” A New Air Interface For Long Term Evolution”,
2nd ed., John Wiley & Sons Ltd, 2008
[21] Sinem Coleri, Mustafa Ergen, Anuj Puri, and Ahmad Bahai,“Channel estimation techniques based on pilot arrangement in OFDM systems,”IEEE Trans. Broadc., vol. 48, no.3, September 2002.
[22] Wei Zhang, Xiang-Gen Xia,and P.C. Ching,“Optimal training and pilot pattern design for OFDM system in Rayleigh fading, IEEE Trans. Broadc., vol.52, no.4, December 2006.
[23] B. Karakaya, H. Arslan. “Channel estimation for LTE uplink in high Doppler spread,” in Proc. WCNC, Mar. 2008, pp. 1126-1130.
[24] Y. Zhao and A. Huang, “A novel channel estimation method for OFDM mobile communication systems based on pilot signals and transfer-domain processing,” in Proc. VTC, May 1997, pp. 2089-2093.
[25] O. Edfors, M. Sandell, J.-J. van de Beek, S. K. Wilson, and P. O. Borjesson, “OFDM channel estimation by singular value decomposition,” IEEE trans. Commun., vo1. 46, no. 7, pp. 931-939, Jul. 1998.
[26] J.-C. Lin, “Least-squares channel estimation for mobile OFDM communication on time-varying frequency-selective fading channels,” IEEE Trans. Veh. Technol., vol 57, no. 6, pp. 3538-3550, Nov. 2008.
[27] M.-L. Ku, W. C Chen , and C.C Huang,“EM-Based Iterative Receivers for OFDM and BICM/OFDM Systems in Doubly Selective Channels” IEEE Trans. Commun, vo1. 10, no. 5, pp. 1405 - 1415, 2011.
[28] J.-J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and P. O. Borjesson, “On channel estimation in OFDM systems,” in Proc. VETEC, Jul. 1995, vol. 2, pp. 815-819.
[29] M. K. mehmet and H. Arslan, “Channel estimation for wireless OFDM systems,” Commun. Surveys Tuts., vol. 9, no. 2, pp. 18-48, 2nd quarter 2007.
[30] O. Edfors, M. Sandell, J.-J. van, S. K. Wilson , and P. O. Borjesson, ”Analysis of DFT-Based Channel Estimators for OFDM” Wireless Personal Commun., Vol.12, No1, pp 55-70, 2000.
[31] Gillian Huang, Andrew Nix, and Simon Armour,“DFT-Based Channel Estimation and Noise Variance Estimation Techniques for Single-Carrier FDMA” IEEE Trans. Veh. Technol., 2010 , pp. 1 – 5.
指導教授 林嘉慶(Jia-Chin Lin) 審核日期 2012-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明