博碩士論文 993203017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.217.135.23
姓名 郭仁傑(Ren-jie Guo)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 齒頂修整之正齒輪對齒面受載接觸分析
(Loaded Tooth Contact Analysis of Gear Pairs with Tip Relief)
相關論文
★ LED封裝點膠系統創新設計之研究★ 夾治具概念設計方法之研究
★ 葡萄糖檢測電極基材之化銅電鍍鎳金製程開發研究★ 印刷電路板蝕刻製程設計與可視化驗證實驗
★ 平行軸錐形齒輪齒根應力特性之研究★ 漸開線直齒錐形齒輪齒根應力之量測與分析
★ 單軸押出機減速機系列產品之計算機輔助開發模式之研究★ 漸開線直齒錐形齒輪齒根應力計算模型之初步研究
★ 非旋轉式表面電漿儀之創新設計與製作★ 電腦輔助單軸押出機減速機系列產品之開發
★ 單軸押出機減速機箱體系列化發展模式之研究★ 電腦輔助機械零件製造成本預估 – 以單軸押出機減速機為例
★ 直齒錐形齒輪齒根應力解析計算模式之研究★ 具點接觸型態之歪斜軸錐形齒輪對齒面疲勞破壞之初步研究
★ 粉末冶金齒輪齒根疲勞強度之研究★ 電腦輔助設計程式模組之建構-以齒輪減速機為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於漸開線齒輪具有加工簡單、中心距誤差敏感度低、傳動效率高等優點,因此廣泛應用於各種動力傳遞設備上。但是實際應用時,齒輪對在嚙合過程中會因嚙合剛性變動與齒頂邊緣接觸等問題,造成振動與噪音,甚至齒面破壞,因此一般會對齒輪進行齒形修整以改善嚙合過程的負載劇烈變動以及避免齒頂邊緣接觸現象。然而齒形修整相當於齒形誤差,因此必須對齒形修整前後所造成之應力變化進行研究,以瞭解齒輪對之齒形修整設計方式在實際應用上之結果
本研究之目的為探討漸開線正齒輪對齒形修整方法常用之齒頂修整對齒面接觸應力之影響,研究方向包括無齒頂修整之齒輪對齒頂邊緣接觸發生時機與齒面接觸應力分布,以及不同齒頂修整方式對漸開線正齒輪對負載分配與齒面接觸應力分布的影響。論文首先以漸開線正齒輪對嚙合幾何關係式,探討無齒頂修整之漸開線正齒輪對在不同負載下之齒頂邊緣接觸發生時機。隨後應用剛性法與影響係數法分析無齒頂修整以及不同齒頂修整型式下齒輪對之靜態負載分配與齒面接觸應力分布。本研究探討之齒頂修整型式包括線性長、短齒頂修整,齒頂圓角,以及拋物線等。
由負載分配分析結果可以發現線性齒頂修整與拋物線齒頂修整皆能有效改善漸開線正齒輪對的負載變動問題,而齒頂圓角或其他齒頂倒角方式修整則無法改善。
根據齒面接觸應力分析結果,未修整齒對在理論接觸開始前與結束後一齒之齒頂邊緣與另一齒之齒根會產生非赫茲接觸應力,其應力值皆遠大於正常接觸狀況下之應力;發生最嚴重應力之嚙合位置則在接近理論接觸開始前以及理論接觸結束附近位置。此狀況在以拋物線以及線性長、短齒頂修整型式皆可有效避免。但具齒頂圓角之齒輪對在嚙合過程中仍會發生齒頂邊緣接觸現象。另外齒頂修整曲線若無平滑化,則會在修整起始位置產生應力集中現象。
本研究結果顯示,論文中所建立之負載分配與齒面接觸應力計算模組具有相當之準確度,所需運算時間也較短,因此可有效運用在齒輪齒頂修整設計分析。
關鍵字:齒頂邊緣接觸、齒頂修整、齒頂圓角、負載分配、齒面接觸應力
摘要(英) Involute gears have advantages such as simple manufacturing process, low sensitivity due to the center distance deviation, and high transmission efficiency etc., so it is widely applied in various power transmission equipments. However, vibration, noise, and even tooth surface damage will occurr during the gear mesh because of variation of mesh stiffness and tooth tip corner contact. Therefore, profile modification on gear teeth is a commonly method to reduce the violent change of loading on teeth and to avoid tooth contact on tip corners beyond the normal line of action. But the profile modification is equivalent to a special kind of tooth profile deviation, it is necessary to analyze the loaded tooth contact stress of the gear pairs with or without profile modification to understand the influence of different profile modification design on the performace of gear drives in practical application.
The aim of this study is to analyze the influence of tip relief, a common profile modification method for involute spur gear, on tooth contact stress. This study includes (a) identification of occurrence of tooth tip corner contact and analysis of contact stress distribution of the involute spur gear pair without profile modification, and (b) the influence of different tip relief types on load sharing and contact stress distribution of involute spur gear pairs. At first in the thesis, occurrence of tooth tip corner contact of involute spur gear pairs without profile modification under different loads is identified based on the geometric relation of gear mesh. Then static load sharing and tooth contact stress distribution of spur gear pairs without and with different tip relives are analyzed by using stiffness method and influence coefficient method respectively. The types of tip relief discussed in the study include linear long and short tip relief, tip rounding, parabolic tip relief, etc.
The results of the load sharing analysis show that linear tip relief and parabolic tip relief can improve problem of the violent load change, but tip rounding or other tip chamfer types can not improve it.
According to the results of the loaded tooth contact analysis, non-Hertzian contact of tooth pairs occurs at the positions before the theoretical contact begin and after the theoretical contact end of the tooth pair without tip relief. The values of the corresponding contact stress are much larger than the value of normal contact. The maximum contact stress occurs at the position nearby theoretical contact begin and end position. The type of non-Hertzian contact can be avoided effectively by using the linear tip relief and the parabolic tip relief, but tip corner contact of tooth pair with tip rounding still occurrs. In addition, stress concentration can be also found at starting position of the tip relief, if the tip relief curve is not smooth.
The analysis results show that the calculation modules for load sharing and loaded tooth contact analysis developed in this study are reliable and time-saving for calculattion, so they can be used for tip relief design and analysis efiiciently.
Keywords: Tooth Tip Corner Contact, Tip Relief, Tip rounding, Load Sharing, Tooth Contact Stress
關鍵字(中) ★ 齒頂邊緣接觸
★ 齒頂修整
★ 齒頂圓角
★ 負載分配
★ 齒面接觸應力
關鍵字(英) ★ Tooth Tip Corner Contact
★ Tip Relief
★ Tip rounding
★ Load Sharing
★ Tooth Contact Stress
論文目次 摘要 i
Abstract iii
謝誌 v
目錄 vi
圖目錄 ix
表目錄 xvii
符號對照表 xviii
第1章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 3
1.2.1 齒頂邊緣接觸相關研究 3
1.2.2 齒頂修整相關研究 4
1.3 研究目的 6
1.4 論文架構 7
第2章 研究方法 8
2.1 漸開線正齒輪齒面數學模型 8
2.2 輪齒變形計算模式 9
2.2.1 齒面赫茲接觸變形計算模式 10
2.2.2 輪齒懸臂樑撓曲變形計算模式 10
2.3 齒輪對嚙合模型 11
2.3.1 齒輪對嚙合模型 11
2.3.2 齒輪嚙合齒對負載與變形關係線性化 13
2.4 齒面接觸應力計算模型 15
2.4.1 單齒對接觸模型 15
2.4.2 多齒對接觸模型 17
2.4.3 影響係數計算方法 18
2.5 嚙合齒對漸開線齒面間距計算模式 22
2.6 漸開線正齒輪齒頂修整方式 24
2.6.1 線性齒頂修整 24
2.6.2 平滑化線性齒頂修整 25
2.6.3 拋物線齒頂修整 26
2.6.4 齒頂圓角 28
第3章 物件導向程式模組 30
3.1 物件導向程式設計 30
3.2 程式物件模型架構 31
3.2.1 齒輪物件模組 32
3.2.2 齒輪對物件模組 34
3.2.3 影響係數與接觸應力求解器物件模組 36
第4章 無齒頂修整齒輪對受載接觸分析 37
4.1 齒頂邊緣接觸幾何關係式推導 37
4.1.1 間隙角幾何關係式推導 37
4.1.2 干涉角幾何關係式推導 41
4.2 無齒頂修整齒輪對齒頂邊緣接觸分析 42
4.3 無齒頂修整齒對之齒面受載接觸分析 49
4.3.1 數值分析參數設定 49
4.3.2 有限元素分析設定 50
4.3.3 齒輪齒頂邊緣接觸間距計算 52
4.3.4 正常接觸範圍分析結果 55
4.3.5 齒頂邊緣接觸範圍分析結果 59
4.3.6 無齒頂修整齒對嚙合過程之齒面接觸應力變化 61
第5章 齒頂修整對齒輪對負載分配影響分析 64
5.1 不同齒頂修整型式之齒輪對負載分配分析 64
5.1.1 齒頂圓角齒對負載分配 65
5.1.2 線性齒頂修整齒對負載分配 65
5.1.3 平滑化線性齒頂修整齒對負載分配 68
5.1.4 拋物線齒頂修整齒對負載分配 68
5.1.5 以齒頂倒角修整齒對負載分配 69
5.2 不同齒頂修整方式負載分配結果比較 70
5.2.1 線性齒頂修整與拋物線齒頂修整負載分配比較 70
5.2.2 線性齒頂修整與平滑化線性齒頂修整負載 72
第6章 齒頂修整對齒面接觸應力影響分析 73
6.1 齒頂圓角間距計算模型 73
6.2 齒頂修整齒面間距計算模型 75
6.3 齒頂圓角齒對齒面接觸應力分析結果 77
6.4 線性短齒頂修整齒輪對齒面接觸應力分析結果 83
6.4.1 線性短齒頂修整 83
6.4.2 平滑化線性短齒頂修整 86
6.5 線性長齒頂修整齒輪對齒面接觸應力分析結果 89
6.5.1 線性長齒頂修整 89
6.5.2 平滑化線性長齒頂修整 91
6.6 拋物線齒頂修整齒輪對齒面接觸應力分析結果 94
6.6.1 拋物線齒頂修整I型 94
6.6.2 拋物線齒頂修整II型 96
6.7 齒頂倒角修整齒對齒面接觸應力分析 98
6.8 數值分析結果比較 102
6.8.1 單齒對接觸開始與結束 102
6.8.2 齒頂修整起始位置 103
第7章 結論與展望 106
7.1 結論 106
7.2 未來展望 107
參考文獻 109
參考文獻 1 Errichello, R. L., Hewette, C., and Eckert, R., “Point-Surface-Origin Macropitting Caused by Geometric Stress Concentration,” Gear Technology January/February 2011, pp. 54-59, 2011.
2 Weber, C., Banaschek, K., “Formänderung und Profilrücknahme bei gerad- und schräg¬verzahnten Räder (Form Changing and Profile Relief of Spur and Helical Gears),” Braunschweig: F. Vieweg, 1953.
3 Niemann, G., “Maschinenelemente Band II: Getriebe,” Springer-Verlag, Berlin, 1960.
4 Sigg, H., “Profile and Longitudinal Corrections on Involute Gears,” AGMA 109.16, 1965.
5 BS 436 Part 2: Back Rack Form, Modules and Accuracy (1 to 50 Metric Module), 1970.
6 Sato, T., and Umezawa, K., “The Stiffness of Tooth at Edge Contact,” Transactions of the Japan Society of Mechanical Engineers. C, Vol. 51(463), pp. 588-596, 1985.
7 Munro, R. G., Morrich, L., Palmer, and D., “Gear Transmission Error Outside the Normal Path of Contact Due to Corner and Top Contact,” Proceedings of the Institution of Mechanical Engineers. Part C, Journal of Mechanical Engineering Science, Vol. 213, pp. 389-400, 1999.
8 Munro, R. G., Palmer, D., and Morrich, L., “An Experimental Method to Measure Gear Tooth Stiffness throughout and Beyond the Path of Contact,” Proceedings of the Institution of Mechanical Engineers. Part C, Journal of Mechanical Engineering Science, Vol. 215, pp. 793-803, 2001.
9 Terauchi, Y., Sgiraishi M., and Matsuyama, T., “A Study on Rolling Finish of Gear - Theoretical Analysis of Number of Contact Points and Plastic Deformations,” Bulletin of the JSME, Vol. 28, pp. 979-986, 1985.
10 Uematsu S., and Lyu, S.-K., “Elongation of Contact Length on the Line of Action in Roll Forming of Gears,” KSME International Journal, Vol. 17, pp.321-328, 2003.
11 周長江、唐進元、鐘志華,“齒輪傳動的線外嚙合與衝擊摩擦”,機械工程學報,第44卷,第3期,pp. 75-81,2008。
12 Beghini, M., Presicce, F., and Santus, C., “A Method to Define Profile Modification of Spur Gear and Minimize the Transmission Error,” AGMA Fall Technical Meeting, Milwaukee, Wisconsin , October 2004.
13 Beghini, M., Presicce, F., and Santus, C., “Proposal for Tip Relief Modification to Reduce Noise in Spur Gears and Sensitivity to Meshing Conditions,” Gear Technology March/April 2006, pp. 34-40, 2006.
14 Kissling, U., “Effects of Profile Corrections on Peak-to-Peak Transmission Error,” Gear Technology July 2010, pp. 52-61, 2010.
15 Ohshima, F., and Yoshino, H., “Studies on Lower Noise Spur Gears : For Gears with High Contact Ratio,” The Machine Design and Tribology Division meeting in JSME 2008(8), pp. 185-186, 2008.
16 Lin, H. H., Dennis, P., Townsend, D. P., and Osewald, F. B., “Profile Modification to Minimize Spur Gear Dynamic Loading,” NASA Technical Memorandum 89901, 1987.
17 Lin, H. H., Osewald, F. B., and Townsend, D. P., “Dynamic Loading of Spur Gears with Linear or Parabolic Tooth Profile Modifications,” Mechanism and Machine Theory, Vol. 29, pp. 1115-1129, 1994.
18 Osewald, F. B., and Townsend, D. P., “Influence of Tooth Profile Modification on Spur Gear Dynamic Tooth Strain,” NASA Technical Memorandum106952, 1995.
19 Padmasolaka,G., Lin, H. H., and Osewald, F. B., “Influence of Tooth Spacing Error on Gears With and Without Profile Modifications,” NASA TM-2000-210061, 2000.
20 Tanaka, S., Ezoe, S., and Hoyashita, S., “Static Load Sharing between Contacting Gear Teeth with the Tip Relief,” Transactions of the Japan Society of Mechanical Engineers. C, Vol. 54(503), pp. 1530-1534, 1988.
21 Tesfahunegn, Y. A., Rosa, F., and Gorla, C., “The Influence of Profile Modification on Root Stress,” MPT2001-Fukuoka: The JSME International Conference on Motion and Power Transmissions 2001, pp. 407-412, 2001.
22 Beghini, M., Presicce, F., Santus, C., and Bragallini, G. M., “Influence of the Linear Tip Relief Modification In Spur Gears and Experimental Evidence,” Proceedings of 12th International Conference on Experimental Mechanic, Bari, Italy, September 2004.
23 Frazer, R. C., Shaw, B. A., Palmer, D., and Fish M., “Optimizing Gear Geometry for Minimum Transmission Error, Mesh Friction Losses and Scuffing Risk Through Computer-Aided Engineering,” Gear Technology August 2010, pp. 58-67, 2010.
24 Fujii, M., Obata, F. and Yoshida, A., “Influence of Tip Relief on Working Flank Bulk Temperature in Spur Gears,” Transactions of the Japan Society of Mechanical Engineers. C, Vol. 56(526), pp. 1564-1569, 1990.
25 Johnson, K. L., “Contact Mechanics,” Press Syndicate of the University of Cambridge, Cambridge, 1985.
26 Terauchi, Y., Nagamura, K., “Study on Deflection of Spur Gear Teeth: 2nd Report, Calculation of Tooth Deflection for Spur Gears with Various Tooth Profile,” Bulletin of JSME, Vol. 24, No. 188, pp. 447-452, 1981.
27 黃冠霖,“具太陽齒輪浮動之行星齒輪機構負載分析”,國立中央大學機械工程學系碩士論文,2010。
28 吳思漢,“近似線接觸型態之歪斜軸漸開線錐形齒輪對齒面接觸強度之研究”,國立中央大學機械工程學系博士論文,2009。
29 Wellauer, E., and Seireg, A., “Bending Strength fo Gear Teeth by Cantilever-plate Theory,” Journal of Engineering for Industry, Trans, ASME, Vol. 82, pp. 213-222, 1960.
30 葉湘羭,“具行星齒輪浮動之行星齒輪機構靜態負載分析”,國立中央大學機械工程學系碩士論文,2011。
31 KISSsoft, http://www.kisssoft.ch/
32 Martin, J., and Odell, J., 原著 陳玄玲譯,“物件導向分析與設計”,松崗電腦圖書資料股份有限公司,台北,1994。
指導教授 蔡錫錚(Shyi-jeng Tsai) 審核日期 2013-3-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明