博碩士論文 100226072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:3.139.108.150
姓名 黃于洲(Yu-Chou Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 微米光柵壓印有機太陽能電池主動層之研究
(Study of Imprinted Micro-Grating Active Layer in Organic Photovoltaic)
相關論文
★ 膜堆光學導納量測儀★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究
★ 有機高分子電化學發光元件★ 開孔電極結構對於垂直式有機電晶體電性影響之研究
★ 以奈米壓印改善陽極氧化鋁週期性★ 含氫矽薄膜太陽電池材料之光電特性研究
★ 自我複製結構膜光學性質之研究★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究
★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究★ 以奈米小球提升矽薄膜太陽能電池吸收之研究
★ 定光電流量測法在氫化矽薄膜特性的研究★ 動態干涉儀量測薄膜之光學常數
★ 反應式濺鍍過渡態矽薄膜之研究★ 光子晶體偏振分光鏡之設計與製作
★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究★ 負折射率材料應用於抗反射與窄帶濾光片之設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,許多團隊在有機太陽能電池的效率增進貢獻良多,從單層有機太陽能電池到奈米壓印有機太陽能電池的研究,無論是在有機材料的吸光特性或是電荷收集上都有相當的進展,盼望早日能夠生產出商用的電池。
本研究重點在於吾人以熱壓印製作微米週期結構有機太陽能電池主動層,期望光入射至主動層和鋁電極界面時能在微米光柵結構內多次反射與吸收,增強主動層的吸收率,亦能使主動層和鋁電極間的接觸面積增加,使有效收集到的載子更多。同時以時域有限差分法模擬與光譜儀量測一同驗證此電池結構吸收率的增進,進一步縮小至奈米結構模擬之,並在AM 1.5G的光源下進行效率量測,分析I-V曲線得到電性參數,在施加相同壓力之下,光柵深度10 nm的有機太陽能電池短路電流較平面壓印有機太陽能電池相對提升0.05 mA(6.6 %),光柵深度30 nm的有機太陽能電池短路電流較平面壓印有機太陽能電池相對提升0.118 mA(20 %),意即光柵結構所貢獻的抗反射效果使微米週期光柵有機太陽能電池較平面壓印有機太陽能電池有更高的光電流輸出。
摘要(英) In recent years, the efficiency of organic photovoltaic has increasing dramatically through numerous researchers’ contribution. From single layer organic photovoltaic to tandem organic photovoltaic, both the absorbance of photon and charge collection is increasing gradually. We are looking forward to producing commercial batteries.
This thesis focuses on enhancement of electron collection efficiency and photon absorbance in organic photovoltaic through thermal imprint lithography on active layer. The enhancement of photon absorbance is proved with spectrophotometer in this photovoltaic, and collaborated with the FDTD simulation. Finally, we perform optical simulation on varying the structure period from micrometer to nanometer scale. The photocurrent of device is measured under standard AM 1.5G solar spectrum for analyzing electrical property by I-V curve. Basing on the same imprint pressure, the short circuit current of depth of 10 nm grating active layer in OPV is 0.05 mA(relative improvement 6.6%) higher than planar one. The same phenomena can be found under higher imprinted pressure that the short circuit current of depth of 30 nm grating active layer in OPV is 0.118 mA (relative improvement 20%)higher than planar one. Therefore, the contribution of anti-reflection caused from imprinted micro-grating structure in OPV can enhance photocurrent more than planar one.
關鍵字(中) ★ 奈米壓印
★ 熱壓印
★ 有機太陽能電池
關鍵字(英)
論文目次 摘要 …………………………………………………………………….. I
Abstract ………………………………………………………………… II
誌謝 …………………………………………………………………... III
目錄 …………………………………………………………………... IV
圖目錄 ………………………………………………………………... VI
表目錄 ………………………………………………………………... IX
第一章 緒論 …………………………………………………………... 1
1-1 前言 ……………………………………………………………….. 1
1-2 太陽能電池簡介 ………………………………………………….. 3
1-3 研究動機 ………………………………………………………….. 5
第二章 實驗原理與技術 ……………………………………………... 6
2-1 奈米壓印技術 …………………………………………………….. 6
2-2 奈米壓印文獻回顧 ……………………………………………….. 8
2-3 有機太陽能電池工作原理 ……………………………………… 11
2-4 有機太陽能電池文獻回顧 ……………………………………… 15
2-5 太陽能電池量測參數介紹 ……………………………………… 17
第三章 實驗儀器與模擬軟體 ………………………………………. 21
3-1 手套箱系統 ……………………………………………………… 21
3-2 光電轉換效率量測系統 ………………………………………… 21
3-3 原子力顯微鏡 …………………………………………………… 21
3-4 掃描式電子顯微鏡 ……………………………………………… 22
3-5 時域有限差分法 ………………………………………………… 23
第四章 實驗結果與理論分析 ………………………………………. 26
4-1 微米週期主動層有機太陽能電池製作 ………………………… 28
4-1-1 表面改質 ……………………………………………………. 29
4-1-2 熱壓印和電池製作 …………………………………………. 30
4-2 六角陣列奈米柱主動層有機太陽能電池前段製程 …………… 32
4-3 微米週期主動層有機太陽能電池的效率量測 ………………… 36
4-4 微米週期主動層有機太陽能電池的光學特性分析 …………… 39
4-5 展望有機太陽能電池的光學特性分析 ………………………… 44
4-5-1 微米週期主動層有機太陽能電池 ………………………..... 44
4-5-2 奈米週期主動層有機太陽能電池 …………………………. 46
4-5-3 六角陣列奈米柱主動層有機太陽能電池 …………………. 48
4-5 微米週期主動層有機太陽能電池光電分析總結 ……………… 50
第五章 結論與未來展望 ……………………………………………. 52
參考文獻 ……………………………………………………………... 56
參考文獻 [1] NATIONS, UNITED. KYOTO PROTOCOL TO THE UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE. 1998; Available from: http://unfccc.int/resource/docs/convkp/kpeng.pdf.
[2] 林明獻, 太陽能電池技術入門 2007: 全華圖書股份有限公司.
[3] Agua Caliente Solar Project. Available from: http://www.firstsolar.com/en/Projects/Agua-Caliente-Solar-Project.
[4] Arons, A. B., & Peppard, M. B. , Einstein’s Proposal of the Photon Concept—a Translation of the Annalen der Physik Paper of 1905. American Journal of Physics, 1965. 33(5): p. 367-374.
[5] 蔡進譯, 超高效率太陽電池─從愛因斯坦的光電效應談起. 物理雙月刊, 2005. 27: p. 701-719.
[6] 太陽能電池. Available from: http://zh.wikipedia.org/wiki/%E5%A4%AA%E9%98%B3%E8%83%BD%E7%94%B5%E6%B1%A0.
[7] Lyu, Hong-Kun, Sim, J. H., Woo, Sung-Ho, Kim, K. P., Shin, Jang-Kyoo,& Han Y. S. , Efficiency enhancement in large-area organic photovoltaic module using theoretical power loss model. Solar Energy Materials and Solar Cells, 2011. 95(8): p. 2380-2383.
[8] Jung, J., Kim, D., Lim, J., Lee, C.,& Yoon, S. C., Highly Efficient Inkjet-Printed Organic Photovoltaic Cells. Jpn. J. Appl. Phys., 2010. 49.
[9] Hou, J., Chen, Hsiang-Yu, Zhang, S., Chen, R. I., Yang, Y., Wu, Y.,& Li G. , Synthesis of a Band Gap Polymer and Its Application in Highly Efficient Polymer Solar Cells. J. Am. Chem. Soc, 2009. 131(43).
[10] Yang, Y., Mielczarek, K., Aryal, M., Zakhidov, A.,& Hu, W., Nanoimprinted Polymer Solar Cell. ACS Nano, 2012. 6(4): p. 2877-2892.
[11] Kim, J. Y., Kim, S. H., Lee, Hyun-Ho, Lee, K., Ma, W., Gong, X.,& Heeger, A. J. , New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer. Advanced Materials, 2006. 18(5): p. 572-576.
[12] Chou, S. Y., Krauss, P. R.,& Renstrom, P. J. , Nanoimprint Lithography. J. Vac. Sci. Technol. B, 1996. 14(6): p. 4129-4133.
[13] Bender, M., Otto, M., Hadam, B., Vratzov, B., Spangenberg, B.,& Kurz, H. , Fabrication of nanostructures using a UV-based imprint technique. Microelectronic Engineering, 2000. 53: p. 233-236.
[14] Voicu, N. E., Ludwigs, S., Crossland, E. J. W., Andrew, P.,& Steiner, U. , Solvent-Vapor-Assisted Imprint Lithography. Advanced Materials, 2007. 19(5): p. 757-761.
[15] Brabec, C. J., Sariciftci, N. S.,& Hummelen, J. C. , Plastic Solar Cells. Adv. Funct. Mater., 2001. 11(1): p. 15-26.
[16] Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K.,& Yang, Y., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 2005. 4(11): p. 864-868.
[17] He, X., Gao, F., Tu, G., Hasko, D., Huttner, S., Steiner, U., Greenham, N. C., Friend, R. H.,& Huck, W. T. S. , Formation of nanopatterned polymer blends in photovoltaic devices. Nano Lett, 2010. 10(4): p. 1302-1307.
[18] Park, J. Y., Hendricks, N. R.,& Carter, K. R. , Solvent-assisted soft nanoimprint lithography for structured bilayer heterojunction organic solar cells. Langmuir, 2011. 27(17): p. 11252-11258.
[19] 吳定中、韓闕, 微電子電路. 2 ed, 2005: 高點文化.
[20] 許凱翔, 以DSP實現太陽能電池最大功率追蹤控制, 2012, 國立中央大學 機械工程學系. p. 12-15.
[21] 許捷翔, 利用陽極氧化鋁薄膜在矽太陽能電池表面製做抗反射奈米結構, 2012, 國立中央大學 光電科學與工程學系. p. 52.
[22] Yee, K. S. , Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media. Antennas and Propagation, IEEE Transactions on, 1966. 14(3).
[23] FDTD電場磁場配置圖. Available from: http://wenku.baidu.com/view/bb89f4936bec0975f465e2d7.html.
[24] Koo, N., Bender, M., Plachetka U., Fuchs, A., Wahlbrink, T., Bolten, J.,& Kurz H., Improved mold fabrication for the definition of high quality nanopatterns by Soft UV-Nanoimprint lithography using diluted PDMS material. Microelectronic Engineering, 2007. 84(5-8): p. 904-908.
[25] Zhou, W., Zhang, J., Liu, Y., Li, X., Niu, X., Song, Z., Min, G., Wan, Y., Shi, L.,& Feng, S., Characterization of anti-adhesive self-assembled monolayer for nanoimprint lithography. Applied Surface Science, 2008. 255(5): p. 2885-2889.
[26] Keller, F., Hunter, M. S.,& Robinson, D. L., Structural Features of Oxide Coatings on Aluminum. The Electrochemical Society, 1953. 100(9): p. 411-419.
[27] Thompson, G.E., Porous anodic alumina: fabraication, characterization and applications. Thin Solid Films, 1997. 297: p. 192-201.
[28] Zhao, Nai-Qin, Jiang, Xiao-Xue, Shi, Chun-Sheng, Li, Jia-Jun, Zhao, Zhi-Guo, Du, Xi-Wen, Effects of anodizing conditions on anodic alumina structure. Journal of Materials Science, 2007. 42(11): p. 3878-3882.
[29] Wiedemann, W., Sims, L., Abdellah, A., Exner, A., Meier, R. et al., Nanostructured interfaces in polymer solar cells. Applied Physics Letters, 2010. 96(26): p. 263109.
[30] Allen, J. E., Yager, K. G., Hlaing, H., Nam, Chang-Yong, Ocko, B. M., Black, C. T., Enhanced charge collection in confined bulk heterojunction organic solar cells. Applied Physics Letters, 2011. 99(16): p. 163301.
[31] Ko, Doo-Hyun, Tumbleston, J. R., Schenck, W., Lopez, R.,& Samulski, E. T. , Photonic Crystal Geometry for Organic Polymer:Fullerene Standard and Inverted Solar Cells. The Journal of Physical Chemistry C, 2011. 115(10): p. 4247-4254.
[32] Kim, J. Y., Lee, K., Coates, N. E., Moses, D., Nguyen, T. Q., Dante, M.,& Heeger, A. J. , Efficient tandem polymer solar cells fabricated by all-solution processing. Science, 2007. 317(5835): p. 222-225.
指導教授 張瑞芬、陳昇暉
(Jui-Fen Chang、Sheng-Hui Chen)
審核日期 2013-10-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明