博碩士論文 100323601 詳細資訊

本論文永久網址:   


以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.145.176.153
姓名 費浦納(prana fistianduta)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 Numerical simulation and design of ejector for solar air conditioning systems
(Numerical simulation and design of ejector for solar air conditioning systems)
相關論文
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 鬆弛時間與動態接觸角對旋塗不穩定的影響
★ 電化學製作針錐微電極之製程研究與分析★ 蚶線形滑轉板轉子引擎設計與實作
★ 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係★ 應用離心法實驗探求多孔介質飽和度與毛細力之關係
★ 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制★ 轉注成形充填過程之巨微觀流數值模擬
★ 二維熱流效應對電化學加工反求工具形狀之分析★ 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析
★ 飽和度對金屬射出成形製程中毛細吸附脫脂之影響★ 轉注成型充填過程巨微觀流交界面之數值模擬
★ 轉注成型充填過程中邊界效應之數值模擬★ 鈦合金整流板電化學加工技術研發
★ 射出/壓縮轉注成型充填階段中流場特性之分析★ 脈衝電化學加工過程中氣泡觀測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在這篇論文中,廣義的太陽能空調系統噴射器研製成功利用FLUENT。噴射器的一維分析進行這項工作。在使用氨蒸汽作為工作流體的情況下,顯示操作壓力和噴射器幾何形狀對流動結構和噴射器空調系統性能的影響。主噴嘴幾何參數變化為2.90 mm2,2.93 mm2和2.96 mm2。對於一個給定的噴射器,存在一個最佳的主要流體壓力在得到最大霧沫比(entraintment ratio)的情況下。隨著增加主要流體壓力,霧沫比下降;降低排出壓力時,霧沫比增加。最好性能的操作條件是Pg= 0.4MPa,Tg= 100℃, Pe=0.04MPa, Te=4℃, Pc= 0.06MPa,Tc= 28℃在2.90 mm2的主噴嘴幾何參數下,得到最高的霧沫比以獲得更好的性能。
一個二維軸對稱,理想氣體模型的發展,計算噴射器空調系統的流場。藉由它的結果討論,預測空調系統噴射器的操作條件,來得到噴射器的性能在雙哽塞(choking)或臨界模式條件(critical mode condition)和變化操作條件的情形下,影響主要流體壓力和馬赫數來進行觀察和分析,結果發現噴射器的性能,經由混合室中的混合流體衝擊(shock)的位置和超音速主要流體的擴展直徑,扮演非常重要的角色。在不同的噴射器喉部直徑(A3),能得到臨界背壓(Pc*)。當噴射器喉部直徑(A3)增加時,臨界背壓(Pc*)就下降;噴射器喉部直徑(A3)下降時,臨界背壓(Pc*)就增加,又當噴射器喉部直徑(A3)小於12.7 mm時,即使背壓非常低時噴射器還是不能工作,噴射器性能的變化引起衝擊波的變化。這是導致噴射器部直徑(A3)的變化。
摘要(英) In this thesis a generalized ejector for solar air conditioning system was successfully developed by using FLUENT. A 1-D analysis for ejector is carried out in this work. It revealed the influence of operating pressures and ejector geometries on the flow structure and the performance of an ejector air conditioning system using ammonia vapour as the working fluid. The primary nozzle geometries parameter was varied as 2.90 mm2, 2.93 mm2 and 2.96 mm2. For a given ejector, there exists an optimum primary fluid pressure at which maximum entrainment ratio is obtained. Entrainment ratio is decreased by increasing the primary fluid pressure and entrainment ratio is increased by decreasing the discharge pressure. The best performance was obtained by operating condition Pg=0.4 MPa, Tg=100℃, Pe=0.04 MPa, Te=4℃, Pc=0.06 MPa, and Tc=28℃ with primary nozzle geometry of 2.90 mm2 gives the highest entrainment ratio for better performance.
A 2D axisymmetric, ideal gas model was developed to calculate the flow in the ejector air conditioning system. Predictions at the operating conditions in the ejector air conditioning system were discussed to obtain the ejector performance in the double choking or critical mode condition and variable operating condition. The effects on the primary fluid pressure and Mach number were observed and analyzed. It was found that shock’s position of the mixed fluid and the expansion diameter of the primary fluid supersonic stream within the mixing chamber played a very important role in the ejector performance. The critical back pressure Pc^* on the different ejector throat diameters A3 have obtained. When the ejector throat diameter A3 is larger, the critical back pressure (Pc^* ) is lower. When the ejector throat diameter A3 is smaller, the critical back pressure Pc^* is higher. When the ejector throat diameter A3 < 12.7 mm^2, ejector can’t work even if the back pressure is very low. The change of the ejector performance is caused by the change of shock wave. Which is the result of the change of ejector throat diameter A3.
關鍵字(中) ★ 噴射器設計
★ 數值模擬
★ 太陽能空調
關鍵字(英) ★ Ejector Design
★ Numerical Simulation
★ Solar Air Conditioner
論文目次 ABSTRACT …………………………………………………………………… I
ACKNOWLEDGMENTS …………………………………………………… III
TABLE OF CONTENTS …………………………………………………… IV
LIST OF TABLE …………………………………………………………… VI
LIST OF FIGURE …………………………………………………………… VII
NOMENCLATURE …………………………………………………………… X

CHAPTER
I INTRODUCTION AND LITERATURE REVIEW …………… 1
1-1 Introduction …………………………………………………… 1
1-2 Literature Review of Ejector Design …………………………… 4
1-3 Motivation and Organization …………………………………… 5
II ONE DIMENSIONAL ANALYTICAL MODEL FOR EJECTOR ……… 6
2-1 Introduction ……………………………………………………… 6
2-2 Ejector Performance Analysis ……………………………… 8
2-2-1 Governing Equation ……………………………………… 9
2-2-2 Ejector Performance Analysis Procedure ……………… 12
2-2-3 Ejector Specification and Operating Condition ……… 13
2-2-4 Comparison of Analysis with Various Condition ……… 13
III NUMERICAL SIMULATION FOR EJECTORS …………………….. 16
3-1 Introduction …………………………………………….. 16
3-1-1 Ejector Model …………………………………………….. 17
3-1-2 Governing Equation …………………………………….. 17
3-1-3 Fluid Properties ……………………………………. 25
3-1-4 Boundary Conditions …………………………………….. 25
3-2 Results and Discussion …………………………………....... 26
3-2-1 Relation of the Effective Area on the Ejector Performance … 28
3-2-2 Flow and Mixing Process of the Ejector ……………… 29
3-2-3 Effect of Operating Pressure ……………………………… 30
3-2-4 Effect of Flow Temperature ……………………………… 32
3-2-5 Effect of Flow Pressure ……………………………… 32
3-2-6 Effect of Flow Mach Number …………………………….... 33
3-2-7 Effect of Converging Duct ……………………………… 33
IV CONCLUSIONS ……………………………………………………… 35
REFERENCES ……………………………………………………………… 37
TABLES ……………………………………………………………………… 40
FIGURES ……………………………………………………………………… 42
參考文獻 B.J. Huang, J.M. Chang, V.A. Petrenko, and K.B. Zhuk, “A Solar Ejector Cooling System Using Refriegerant R141b,” Solar Energy, December 1998, Vol. 64, Issues 4-6, Pages 223-226.
J.H. Keenan, E.P. Neumann, and F. Lustwerk, “An Investigation of Ejector Design by Analysis and Experiment,” J. Appl. Mech. Trans. ASME, 1950, Vol. 72, Pages 299-309.
J.H. Keenan, and E.P. Neumann, “A Simple Air Ejector,” Journal of Applied Mechanics, 1942, Vol. 9 No. 2, Pages A75-A81.
W.B. Gosney, Principle of Refrigeration, Cambridge Uni. Press, 1982.
W.F. Stoecker, Steam Jet Refrigeration, Boston, MA: McGraw Hill, 1958.
J.T. Munday, and D.F. Bagster, “A New Theory Applied to Steam Jet Refrigeration,” Ind. Eng. Chem., Proc. Res. Dev, 1977, Vol. 16, Pages 442-449.
K. Chunnanond, and S. Aphornratana, “Ejectors: Applications in Refrigeration Technology,” Renewable and Sustainable Energy Reviews, 2004, Vol. 8, Pages 129-155.
X.J. Zhang, and R.Z. Wang, “A New Combined Adsorption Ejector Refrigeration and Heating Hybrid System Powered by Solar Energy,” Applied Thermal Engineering, 2002, Vol. 22, Pages 1245-1258.
S. He, Y. Li, and R.Z. Wang, “Progress of Mathematical Modeling on Ejectors,” Renewable and Sustainable Energy Reviews, October 2009, Vol. 13, Issues 8, Pages 1760-1780.
E. Nehdi, L. Kairouani, and M. Elakhdar, “A Solar Ejector Air Conditioning System Using Environtment Friendly Working Fluid,” International Journal of Energy Research, 2008, Vol. 32, Pages 1194-1201.
L.A. Defrate, and A.E. Hoerl, “Optimum Design of Ejectors Using Digital Computers,” Chemical Engineering Progress Symposium Series, 1959, Vol. 55 No. 21, Pages 43-51.
G. Emanuel,“Optimum Performance for a Single Stage Gaseous Ejector,” AIAA Journal, 1976, Vol. 14 No. 9, Pages 1292-1296.
P. Rice, and J. Dandachi,“An Equation for the Prediction of Steam Flowrate Required in the Design of Ejectors,” Chemical Engineering Research & Design : Transactions of The Institution of Chemical Engineers, 1991, Vol. 69 No. 4, Pages 332-334.
D.W. Sun, and I.W. Emes, “Performance Characteristics of HCFC-123 Ejector Refrigeration Cycles,” Int. J. Energy Res, 1996, Vol. 20, Pages 871-885.
D.W. Sun, “Recent Developments in the Design Theories and Applications of Ejectors a Review,” J. Inst. Energy, 1995, Vol. 68, Pages 65-79.
B.J. Huang, C.B. Jiang, and F.L. Fu, “Ejector Performance Characteristics and Design Analysis of Jet Refrigeration System,” ASME J. Engng. Gas Turbines and Power, 1985, Vol. 107, Pages 792-802.
J.T. Munday, and D.F. Bagster, “A New Ejector Theory Applied to Steam Jet Refrigeration,” Ind. Engng. Chem., Process Des. Dev., 1977, Vol. 16, Pages 442-449.
Y. Zhu, W. Cai, Y. Li, and C. Wen, “Anode Gas Recirculation Behavior of Fuel Ejector in Hybrid Solid Oxide Fuel Cell Systems : Performance Evaluation in Three Operational Modes,” Journal of Power Sources, 1 December 2008, Volume 185, issue 2, Pages 1122-1130.
B.J. Huang, J.N. Chang, C.P. Wang, and V.A. Petrenko, “A 1 Dimensional Analysis of Ejector Performance,” International Journal of Refrigeration, 1999, Vol. 22, Pages 354-364.
Y. Zhu, W. Cai, and C. Wen, “Development of Control Model for Critical Operation Ejector,” 2nd IEEE Conference, ICIEA 2007, Pages 905-909.
E. Rusly, Lu Aye, W.W.S. Charters, and A. Ooi, “CFD Analysis of Ejector in a Combined Ejector Cooling System,” International Journal of Refrigeration, November 2005, Vol. 28. Pages 1092-1101.
Ansys Fluent Theory Guide Release 14.0, Ansys Inc., U.S.A, November 2011.
T.H. Shih, W.W. Liou, A. Shabbir, and J. Zhu, “A New k-ε Eddy Viscosity Model Development and Number Turbulent Flows – Model Development and Validation,” Computer Fluids, 1995, Vol. 24, No. 3, Pages 227-238.
S.E. Kim, D. Choudhury, and B. Patel, “Computations of Complex Turbulent Flows using the Commercial Code ANSYS FLUENT,” in Proceedings of The ICASE/LaRC/AFOSR Symposium on Modeling Complex Turbulent Flows, Hampton, Virginia 1997.
T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang, and J. Zhu, “A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows – Model Development and Validation,” Computers Fluids, 1995, Vol. 24 No. 3, Pages 227-238.
R.A.W.M. Henkes, F.F. Van Der Flugt, and C.J. Hoogendoorn, “Natural Convection Flow in a Square Cavity Calculated with Low Reynolds Number Turbulence Models,” Int. J. Heat Mass Transfer, 1991, Vol. 34, Pages 1543-1557.
D.C. Wilcox, “Turbulence Modeling for CFD,” DCW Industries Inc., La Canada, California 1998.
S. Sarkar and L. Balakrishnan, “Application of a Reynolds Stress Turbulence Model to the Compressible Shear Layer,” ICASE Report 90-18 NASA CR 182002, 1990.
W.M. Kays, “Turbulent Prandtl Number – Where Are We ?,” J. Heat Transfer, 1994, Vol. 116, Pages 284-295.
T. Sriveerakul, S. Aphornratana, and K. Chunnanond, “Performance Prediction of Steam Ejector Using Computational Fluid Dynamics: Part 1. Validation of The CFD Results,” International Journal of Thermal Sciences, 2007, Vol. 46, Pages 812-822.
H. Jeong, T. Utomo, M. Ji, Y. Lee, G. Lee, and H. Chung, “CFD Analysis of Flow Phenomena Inside Thermo Vapor Compressor Influenced by Operating Conditions And Converging Duct Angles,” Journal of Mechanical Science and Technology, 2009, Vol. 23, Pages 2366-2375.
P. Desevaux,”A Method for Visualizing the Mixing Zone Between Two Co-Axial Flows in an Ejector,” Optics and Lasers in Engineering, May 2001, Vol. 35, Issue 5, Pages 317-323.
K. Matsuo, Y. Miyazato, H.D. Kim, “Shock Train and Pseudo Shock Phenomena in Internal Gas Flows,” Prog. Aerosp. Sci., 1999, Vol. 35, Pages 33-100.
指導教授 洪勵吾(Prof. Hourng, Lih Wu) 審核日期 2013-10-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明