博碩士論文 102623005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:18.118.26.249
姓名 簡士涵(Shih-han Chien)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 電離層赤道異常區之電子濃度季節性震盪及日變化
(Variability of the Equatorial Ionization Anomaly on seasonal and day-to-day time scales)
相關論文
★ Development and Validation of an Airglow Photometer for Upper Atmospheric Chemistry★ Tidal Variability Due to the Quasi-Biennial Oscillation and Ionospheric Responses
★ 自地面觀測氣輝反演氧原子離子光化學模型★ 福衛三號S4閃爍指數時空變化與潮汐分析
★ 飛鼠號立方衛星電力次系統設計★ 支援飛鼠號立方衛星之S頻段地面站評估及整測
★ 福衛五號軌道推算軟體敏感度及飛行資料分析★ 適用於小型衛星二階段展開太陽能板的鎖定鉸鏈的結構設計,分析以及測試
★ 中央大學地面系統設計、整測與驗證★ 太空飛行器電力次系統硬體迴路測試平台之建立
★ 縮裝型小衛星氧原子酬載:實作、功能與環境驗證★ 應用先進電離層探測儀與類神經網路以建立初步電漿泡預測模型
★ 飛鼠號立方衛星之飛行軟體及韌體設計★ IDEASSat任務的經驗教訓:大學立方衛星 的設計、測試、在軌運行和異常分析
★ 以立方衛星與微衛星進行GNSS-R/RO觀測的可行性研究★ Deep Space Radiation Probe 結構與熱控的設計模擬與測試驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 赤道區電離子濃度異常(EIA)是一個發生在電離層F層,也就是在大約300公里高的特有現象,磁赤道兩側的電子濃度在當地時間下午會異常的高,科學界認為主要是受到電離層E層的風場發電機制所衍生,我們在本論文中探討在EIA發生時電子濃度受到太陽活動、地磁活動、大氣活動所產生的短期震盪變化,利用全球電離層地圖探討分別在西經105度、東經15度及120度之EIA發生時的電子濃度,與F10.7太陽射線、地磁活動指數 Kp index及從GAIA assimilative general circulation modal模擬所得到在100公里高分別在中緯度地區與赤道地區的緯向風場所產生的耦合作用,我們對EIA電子濃度及上述提到的物理參數分別在2008年級2012年進行小波轉換分析及討論其相關性以及季節震盪和日變化,我們的結果顯現太陽活動F10.7指數主要有27天週期帳盪。Kp index在2008年由9天週期的震盪所主導,在2012年則是13天與5-7天的震盪分布在特定的季節,原因是因為太陽風的分布差異所致。EIA之電子濃度同樣顯現這些週期性的震盪,並且透過我們的相關性分析呈現了與太陽活動及地磁活動高相關性。對於中性風的研究,我們發現在太陽極大期時(2012年),赤道區100公里高的緯向風所產生的行星波震盪對於一樣經度的EIA電子濃度具有較大的相關性,而太陽極小期時(2008年)則是中緯度地區的風場震盪影響較為明顯,我們猜測在不同條件下的風場震盪會以不同的方式影響著電離層E層的風場發電機制,我們用新的小波轉換相關性分析方法將對於詳細的EIA短期震盪與正確的發生機制有更進一步的成果。
摘要(英) The Equatorial Ionization Anomaly (EIA) is a persistent feature of the ionospheric F layer, located around 300 km altitude, generated by the E-region wind dynamo driven equatorial fountain. We report our analysis of short term EIA variability due to atmospheric, solar, and geophysical sources. Short-term anomalies in EIA region total electron content (TEC) from GPS-derived global ionosphere maps (GIM) at 105° W, 15°E and 120°E longitude are compared to anomalies in three different geophysical sources: solar flux (F10.7 solar flux proxy), geomagnetic storms (Kp index), and atmospheric mesosphere and lower thermosphere (MLT) zonal winds near the semidiurnal tidal peak at northern mid-latitudes and at the equator (GAIA assimilative general circulation model). We present spectral and coherence analysis of EIA TECs and the aforementioned geophysical indices in 2008 and 2012, to illustrate their variability on seasonal and day to day time scales. Our results demonstrate that the variability of the F10.7 solar flux proxy is dominated by the 27 day solar rotation periodicity at all longitude zones. The Kp index shows significant 9 day periodicities in 2008 for entire year, though 2012 is dominated by significant variations with 13 day periods and 5-7 day periods during specific seasons due to differences in the distribution of solar wind corotating interaction regions (CIRs). The EIA TECs show good coherence with the Kp and F10.7 indicies in all three longitude zones during specific seasons. With regard to the neutral zonal winds, EIA TECs show good coherence with 100 km equatorial zonal winds in the same longitude region at specific known planetary wave periods during the solar maxima, but during solar minimum, 100 km mid-latitude zonal winds exhibit more impact on TECs, suggesting that the MLT latitude region responsible for modulation of the E-region dynamo winds differs between the two years examined.
關鍵字(中) ★ 磁赤道異常
★ 小波轉換
關鍵字(英) ★ Equatorial Ionization Anomaly
★ wavelet
論文目次 Table of contents
摘要 i
Abstract ii
Acknowledgment iii
Table of Contents iv
List of figures v
Chapter 1 Introduction 1
1.1 Ionosphere 1
1.2 Tides & Equatorial Ionization Anomaly 6
1.3 Research Motivation 10
Chapter 2 Methodology 13
2.1 Data Processing 13
2.2 Data Analysis 17
Chapter 3 Results 22
3.1 F10.7 Results 22
3.2 Kp index Results 29
3.3 Zonal Wind Results 34
Chapter 4 Discussion 42
Chapter 5 Conclusion 47
References 49
參考文獻 Appleton, E. V., Two anomalies in the ionosphere, Nature, 157, 691, 1946.

A. Grossmann & J. Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shape, Soc. Int. Am. Math. (SIAM), J. Math. Analys.,
15, 723-736, 1984.

Bogart, R. S., Recurrence of solar activity: Evidence for active longitudes, Sol. Phys., 76, 155, 1982.

Crowley, G., A. Reynolds, J. P. Thayer, J. Lei, L. J. Paxton, A. B. Christensen, Y. Zhang, R. R. Meier, and D. J. Strickland., Periodic modulations in thermospheric composition by solar wind high speed streams. Geophysical Research Letters Volume 35, Issue 10, 2008.

Fang T.W., Rashid Akmaev, Tim Fuller-Rowell, Fei Wu Naomi Maruyama and George Millward., Longitudinal and day-to-day variability in the ionosphere from lower atmosphere tidal forcing, GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 2523–2528, 2013.

Fesen, C. G., G. Crowley, R. G. Roble, A. D. Richmond, and B. G. Fejer , Simulation of the pre-reversal enhancement in the low latitude vertical ion drift, Geophys. Res. Lett., 27, 1851–1854, 2000.

Grinsted, A., J. C. Moore, and S. Jevrejeva., Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlinear Processes in Geophysics 11: 561–566, 2004.

Jin, H, Y. Miyoshi, H. Fujiwara, H. Shinagawa, K. Terada, N. Terada, M. Ishii, Y. Otsuka, and A. Saito., Vertical connection from the tropospheric activities to the ionospheric longitudinal structure simulated by a new Earth’s whole atmosphere‐ionosphere coupled model. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, A01316, 2011.

Kelly, M. C., R. A. Heelis, The Earth’s Ionosphere Plasma Physics and Electrodynamics, Academic Press, San Diego, 1989.

Liu H.-L and A. D. Richmond., Attribution of ionospheric vertical plasma drift perturbations to large-scale waves and the dependence on solar activity. Journal of Geophysical Research: Space Physics 118, 2452-2465, 2012.

Liu Guiping, Thomas J. Immel, Scott L. England, Harald U. Frey, Stephen B. Mende, Karanam K. Kumar, and Geetha Ramkumar, Impacts of atmospheric ultrafast Kelvin waves on radio scintillations in the equatorial ionosphere. JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 885–891, 2013

Liu, G., S. L. England, T. J. Immel,
H. U. Frey, A. J. Mannucci, and N. J. Mitchell (2015), A comprehensive survey of atmospheric quasi 3 day planetary-scale waves and their impacts on the day-to-day variations of the equatorial ionosphere,
 GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL 120., 2015

Lei, J. H, Jeffrey P. Thayer, Jeffrey M. Forbes., Rotating solar coronal holes and periodic modulation of the upper atmosphere. Geophysical Research Letters Volume 35, Issue 10, 2008.

Mannucci, A. J., B. D. Wilson, D. N. Yuan, C. H. Ho, U. J. Lindqwister, and
T. F. Runge (1998), A global mapping technique for GPS‐derived ionospheric total electron content measurements, Radio Sci., 33, 565–582.

Mursula Kalevi and Zieger Bertalan., The 13.5-day periodicity in the Sun, solar wind, and geomagnetic activity: The last three solar cycles. Journal of Geophysical Research: Space Physics 101, 27077-27090, 1996.

Millward, G. H., I. Muller-Wodarg, A. Aylward, T. Fuller-Rowell, A. Richmond, and R. Moffett, An investigation into the influence of tidal forcing on F region equatorial vertical ion drift using a global ionosphere-thermosphere model with coupled electrodynamics, J. Geophys. Res., 106, 24,733–24,744, 2001.

Martyn, D. F., Theory of height ionization density changes at the maximum of a Chapman-like region, taking account of ion production, decay diffusion and total drift, Proc. Phys. Soc. London, 68, 254-259, 1955.

Mukhtarova Pl., B. Andonova, C. Borriesb, D. Panchevaa, N. Jakowskib., Forcing of the ionosphere from above and below during the Arctic winter of 2005/2006. Journal of Atmospheric and Solar-Terrestrial Physics, Volume 72, Issues 2–3, Pages 193–205, 2010.

Richmond, A. D., and R. G. Roble, Electrodynamic effects of thermospheric winds from the NCAR Thermospheric General-Circulation Model, J. Geophys. Res., 92, 12,365–12,376, 1987.

Schwabe, "Sonnenbeobachtungen im Jahre ," (Observations of the sun in the year 1843), Astronomische Nachrichten, 21, 1843.

T. J. Fuller-Rowell, The "thermospheric spoon": A mechanism for the semiannual density variation, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 103, NO. A3, PAGES 3951-3956, MARCH 1, 1998

Tsurutani, B. T., W. D. Gonzalez, A. L. C. Gonzalez, F. Tang, J. K. Arballo,
and M. Okada, Interplanetary origin of geomagnetic activity in the
declining phase of the solar cycle, J. Geophys. Res., 100, 21,717 – 21,733, 1995
指導教授 張起維(Chi-wei Chang) 審核日期 2015-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明