博碩士論文 107623005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.145.11.3
姓名 廖啟珽(Chi-Ting Liao)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 福衛五號軌道推算軟體敏感度及飛行資料分析
相關論文
★ 電離層赤道異常區之電子濃度季節性震盪及日變化★ Development and Validation of an Airglow Photometer for Upper Atmospheric Chemistry
★ Tidal Variability Due to the Quasi-Biennial Oscillation and Ionospheric Responses★ 自地面觀測氣輝反演氧原子離子光化學模型
★ 福衛三號S4閃爍指數時空變化與潮汐分析★ 飛鼠號立方衛星電力次系統設計
★ 支援飛鼠號立方衛星之S頻段地面站評估及整測★ 適用於小型衛星二階段展開太陽能板的鎖定鉸鏈的結構設計,分析以及測試
★ 中央大學地面系統設計、整測與驗證★ 太空飛行器電力次系統硬體迴路測試平台之建立
★ 縮裝型小衛星氧原子酬載:實作、功能與環境驗證★ 應用先進電離層探測儀與類神經網路以建立初步電漿泡預測模型
★ 飛鼠號立方衛星之飛行軟體及韌體設計★ IDEASSat任務的經驗教訓:大學立方衛星 的設計、測試、在軌運行和異常分析
★ 以立方衛星與微衛星進行GNSS-R/RO觀測的可行性研究★ Deep Space Radiation Probe 結構與熱控的設計模擬與測試驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 人造衛星或天體之軌道狀態 (orbital state)定義為該物體在某時間點的位置速度向量或是軌道參數 (orbit elements)。在知道某衛星的初始狀態 (initial state)後,便可運用軌道推算器 (orbit propagator)來推算該衛星在未來的軌道狀態,也因此其成為人造衛星星載導航功能的重要元件。軌道推算器之演算需考慮到簡化二體運動 (Keplerian),以及在真實太空環境出現的其他受力,如:地球重力場分布不均、空氣阻力、三體重力場、太陽輻射壓力等。前述非克卜勒受力統稱為軌道擾動 (orbit perturbations),會導致衛星實際的軌跡偏離理想的克卜勒軌道。
軌道推算器的選擇與設計需考量到準確度與運算效率兩種對立因素。軌道推算器若以數值積分的方式解衛星的運動方程式,便可以較準確的方式模擬軌道擾動之影響,但與解析解軌道推算器相比同時增加了所需計算資源與時間。本論文將探討以MATLAB為基礎自製之UPOP (UPperair Orbit Propagator)數值解軌道推算器:由最初始的座標轉換問題、積分器誤差容忍度乃至於受力模型應用,並與福衛五號之原始飛行資料進行比對。旨在建立一種於一週內無軌道測定 (orbit determination)資料輸入最終推算誤差仍能小於10公里之軌道推算器。
摘要(英) The orbital state of the satellite or celestial body is defined as its position and velocity vectors or orbit elements during a specific epoch. After knowing the initial state of the satellite, we can use an orbit propagator to propagate the future ephemeris of the satellite, which makes it an important function inside the navigation filter of an artificial satellite. The algorithm of an orbit propagator should consider not only the simplified Keplerian problem but also other forces in the real space environment: e.g. the aspherical gravitational forces from the Earth, drag, third-body effect, solar radiation pressure, etc. The non-Keplerian forces above are called orbit perturbations, which will make the real trajectory of the satellite differ from the ideal Keplerian orbit.
One should consider the accuracy and computational efficiency when it comes to the choice and design of an orbit propagator, especially if intended for onboard use. The effect of orbit perturbations can be simulated more accurately using a numerical integration approach, but will cost more computationally compared to the analytical solution. This thesis presents and examines the sensitivities of our self-made, MATLAB-based UPOP (UPperair Orbit Propagator) orbit propagator: from the tasks of coordinate transformations, integrator tolerance, the implementations of force models, and finally compares propagated trajectories with the raw flight data of FORMOSAT-5. Our goal is to create an orbit propagator which has the propagational error less than 10 km after 7-days of propagation without orbit determination data inputs.
關鍵字(中) ★ 軌道推算
★ 軌道擾動
★ 福爾摩沙衛星五號
關鍵字(英)
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 IX
一、 緒論 1
1.1 軌道推算 1
1.2 福爾摩沙衛星五號 2
1.3 軌道擾動 3
1.4 UPOP軌道推算器 6
1.5 緒論 6
二、 ECI/ECEF座標轉換 7
2.1 ECI、ECEF座標系與座標轉換之重要性 7
2.2 座標轉換矩陣 9
2.3 座標轉換結果 21
三、積分器與誤差容忍度 23
3.1 ode45積分器 23
3.2 積分誤差容忍度之選定 25
四、重力場模型 27
4.1 球諧函數 27
4.2 EGM2008重力場模型引用 29
4.3 重力場模型階數級數之選定 32
4.4 UPOP軌道推算器初步效能驗證 36
五、空氣阻力 39
5.1 空氣阻力 39
5.2 NRLMSISE-00經驗大氣模型 40
5.3 福衛五號基本參數與飛行姿態 42
5.4 UPOP軌道推算器加入空氣阻力影響效能驗證 43
5.5 衛星姿態變化影響 51
六、第三體引力 53
6.1 第三體引力 53
6.2 各軌道擾動加速度大小比較 57
七、結論與未來展望 61
7.1 對軌道擾動的基礎認識 61
7.2 座標轉換問題 61
7.3 積分器誤差容忍度選定 61
7.4 重力場模型之引用 62
7.5 空氣阻力之引用 62
7.6 第三體引力 63
7.7 未來展望 63
參考文獻 65
附錄 68
附錄一:黃道緯度章動與傾角章動級數 68
附錄二:空氣阻力引用 續 69
附錄三:UPOP軌道推算器使用說明 72
參考文獻 [1] Hoots, F. R. & Roehrich, R. L., “Spacetrack Report No. 3: Models for propagation of NORAD element sets”, Aerospace Defense Center, Peterson Air Force Base, 1980.
[2] National Space Organization, “FORMOSAT-5 Navigation Filter Design and Tuning Report”, 2009.
[3] STK Help External Propagator. Retrieved June 16, 2020, from
https://help.agi.com/stk/index.htm#stk/veh_propagator_external.htm
[4] Systems Tool Kit (STK). Retrieved June 16, 2020, from https://www.agi.com/products/stk.
[5] Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K., “The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)”, Journal of Geophysical Research: Solid Earth, Vol 117(B4), 2012.
[6] Vallado, D. A., Special Perturbation Techniques., Fundamentals of Astrodynamics and Applications., Third Edition, pp. 515–597, Microcosm, Hawthorne, CA., 2007.
[7] Shampine, L. F. & M. W. Reichelt, “The MATLAB ODE Suite”, SIAM Journal on Scientific Computing, Vol 18, pp. 1–22, 1997.
[8] Picone, J. M., Hedin, A. E., Drob, D. P., & Aikin, A. C, “NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues”, Journal of Geophysical Research: Space Physics, Vol 107(A12), 2002.
[9] Vallado, D. A., Coordinates and Time Systems., Fundamentals of Astrodynamics and Applications., Third Edition, pp. 137–242, Microcosm, Hawthorne, CA., 2007.
[10] Mueller, W. H., “The spin, the nutation, and the precession of the Earth′s axis revisited from a (numerical) mechanics perspective”, ZAMM Journal of applied mathematics and mechanics, Vol 95, 2015.
[11] Precession and Nutation. Retrieved June 16, 2020, from https://www2.mps.mpg.de/homes/fraenz/systems/systems3art/node3.html
[12] Defense Mapping Agency, “Supplement to Department of Defense World Geodetic System 1984 Technical Report: Part I - Methods, Techniques, and Data Used in WGS 84 Development”, DMA Tech. Rep. 8350.2-A, Building 56, U.S. Naval Observatory, Washington, DC, 1987.
[13] NIMA, “Department of Defense World Geodetic System 1984”, NIMA-TR 8350.2, 3rd ed, Amendment 1, Washington, DC, National Imagery and Mapping Agency, 2000.
[14] Astrium, “ROCSAT2 Earth Rotation Matrix Computation”, 2001
[15] Newcomb, S., A Compendium of Spherical Astronomy., Reprint edition. NewYork, Dover Publications, 1906.
[16] juliandate. Retrieved June 19, 2020, from
https://www.mathworks.com/help/aerotbx/ug/juliandate.html
[17] Astronomical Times. Retrieved June 19, 2020, from
https://www.cv.nrao.edu/~rfisher/Ephemerides/times.html#TDT
[18] IERS Bulletins. Retrieved June 19, 2020, from
https://www.iers.org/IERS/EN/Publications/Bulletins/bulletins.html
[19] Transformations between Time Systems. Retrieved June 20, 2020, from https://gssc.esa.int/navipedia/index.php/Transformations_between_Time_Systems
[20] Dormand, J., & Prince, P., “A family of embedded Runge-Kutta formulae”, Journal of Computational and Applied Mathematics, Vol 6(1), pp. 19–26, 1980.
[21] Jones, B.A., “Efficient Models for the Evaluation and Estimation of the Gravity Field”, University of Colorado, doctoral dissertation, 2010.
[22] MATLAB script for 3D visualizing geodata on a rotating globe. Retrieved June 9, 2020, from https://www.asu.cas.cz/~bezdek/vyzkum/rotating_3d_globe/index.php.
[23] Losch, M., & Seufer, V, “How to Compute Geoid Undulations (Geoid Height Relative to a Given Reference Ellipsoid) from Spherical Harmonic Coefficients for Satellite Altimetry Applications”, 2003.
[24] Vallado, D. A., & Finkleman, D, “A critical assessment of satellite drag and atmospheric density modeling”, Acta Astronautica, Vol 95, pp. 141–165, 2014.
[25] Hedin, A. E., “Extension of the MSIS Thermosphere Model into the middle and lower atmosphere”, Journal of Geophysical Research: Space Physics, Vol 96(A2), pp. 1159–1172, 1991.
[26] Natural Resources Canada, Earth Sciences Sector, & Geological Survey of Canada, Geomagnetic Laboratory. Solar radio flux - Archive of measurements. Retrieved June 9, 2020, from https://spaceweather.gc.ca/solarflux/sx-5-en.php.
[27] National Geophysical Data Center. (2010, April 5). Retrieved June 9, 2020, from ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETIC_DATA/INDICES/KP_AP/.
[28] 國家實驗研究院國家太空中心福爾摩沙衛星五號衛星特性. Retrieved June 9, 2020, from http://www.nspo.narl.org.tw/tw2015/projects/FORMOSAT-5/satellite.html.
[29] Bloise, N., Capello, E., Dentis, M., & Punta, E., “Obstacle Avoidance with Potential Field Applied to a Rendezvous Maneuver”, Applied Sciences, Vol 7(10), p. 1042, 2017.
[30] Cook, G., “Satellite drag coefficients”, Planetary and Space Science, Vol 13(10), pp. 929–946, 1965.
[31] Vallado, D. A., Equations of Motion., Fundamentals of Astrodynamics and Applications., Third Edition, pp. 1–40, Microcosm, Hawthorne, CA., 2007.
[32] Montenbruck O. and B. Gill., Atmospheric Drag., Satellite orbits, models, methods, application., pp. 83-102, Springer-Verlag, Berlin., 2000.
[33] R. Schamberg., A new analytic representaticn of surface interaction with
hypothermal free molecule ow with application to neutral-particle drag estimates of satellites., Technical Report RM-2313., RAND Research Mem-orandum., 1959.
指導教授 張起維(Loren Chang) 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明