博碩士論文 107683006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:100.26.196.222
姓名 段儀(Yi Duann)  查詢紙本館藏   畢業系所 太空科學與工程研究所
論文名稱 探索電離層剖面之變化: 氣輝、電漿不規則體和閃爍指數的全面研究
(Exploring the Variations of Ionospheric Profiles: A Comprehensive Study of Airglow Brightness, Plasma Irregularities and Ionospheric Scintillation)
相關論文
★ 電離層赤道異常區之電子濃度季節性震盪及日變化★ Development and Validation of an Airglow Photometer for Upper Atmospheric Chemistry
★ Tidal Variability Due to the Quasi-Biennial Oscillation and Ionospheric Responses★ 自地面觀測氣輝反演氧原子離子光化學模型
★ 福衛三號S4閃爍指數時空變化與潮汐分析★ 飛鼠號立方衛星電力次系統設計
★ 支援飛鼠號立方衛星之S頻段地面站評估及整測★ 福衛五號軌道推算軟體敏感度及飛行資料分析
★ 適用於小型衛星二階段展開太陽能板的鎖定鉸鏈的結構設計,分析以及測試★ 中央大學地面系統設計、整測與驗證
★ 太空飛行器電力次系統硬體迴路測試平台之建立★ 縮裝型小衛星氧原子酬載:實作、功能與環境驗證
★ 應用先進電離層探測儀與類神經網路以建立初步電漿泡預測模型★ 飛鼠號立方衛星之飛行軟體及韌體設計
★ IDEASSat任務的經驗教訓:大學立方衛星 的設計、測試、在軌運行和異常分析★ 以立方衛星與微衛星進行GNSS-R/RO觀測的可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-31以後開放)
摘要(中) 這篇博士論文由三個相互關聯的專題組成,旨在提升我們對電離層廓線變化和結構的理解。專題一構築了利用氣輝來觀測電離層的基礎,利用中緯度地面觀測之630.0納米氣輝輻射,反演在150-450公里高度範圍內的氧原子離子密度,並且由電離層探測儀DPS-4測得的電子密度廓線對開發的光化學反演模型進行驗證,增進以氣輝體積輻射率作研究全球尺度電離層的可能性。基於這項技術,專題二探討了將反演模型應用於全球衛星觀測之氣輝的方法。由於需要在切面上獲得精確的體積輻射率廓線,幾何校正是一個不可或缺的步驟。為此,我們訓練了深度學習模型以優化阿貝爾(Abel)反演,並重建氣輝強度廓線中大於300公里的上段缺失部分。通過查普曼函數(Chapman)和三種機器學習演算法的比較,以及使用GOLD任務觀測之135.6奈米輝光之剖面進行驗證,我們的系統訓練得以輸出最佳的氣輝厚度與查普曼型態係數組合,這對於提升衛星觀測之氣輝亮度反演電離層組成的精確度至關重要。最後,專題三利用FORMOSAT-7/COSMIC-2得到的電離層閃爍指數(S4)和電子密度廓線觀測數據,來探索地磁活動期間的電離層變化。比較低緯度O/N2密度比與S4指數的分佈變化,O/N2密度比的減少與恢復期間的S4受抑制區域一致。此研究將這些數據與2022年發生的SpaceX磁暴進行對比分析,並且透過在赤道電離層異常峰值距離的變化中提供了快速穿透電場和擾動風場效應對S4指數影響的證據。整合這三個相互關聯的專題,每個專題都建立在前一個專題的成果上,為我們提供了對電離層剖面變化和組成的全面而細緻的理解,包括干擾因素和操作機制。
摘要(英) This dissertation comprises three interconnected projects, all tailored to advance our understanding of the variations and structure of ionospheric profiles. The first project forms the foundation by using mid-latitudinal 630.0 nm airglow emission to calculate atomic oxygen ions ([O+]) density within an altitude range of 150–450 km. Electron density (Ne) measured by digisonde DPS-4 validates the developed inversion model, unlocking the potential to use the airglow volume emission rate (VER) as ionospheric tracers on a global scale. Building on this foundational knowledge, the second project addresses the challenges of applying the inversion model to global satellite observations. As the accuracy of the VER profile at the tangent point is paramount, it requires geometry calibration. To this end, we deploy deep learning to optimize Abel inversion and reconstruct the missing upper segment (>300 km) of airglow intensity profiles. Through the Chapman function and three training algorithms: GDX (Gradient descent with momentum and adaptive learning rate), SCG (Scaled conjugate gradient), and LM (Levenberg-Marguardt), our system is trained to output an optimal set of slab thickness and type coefficient, essential for accurate global applications. The final project studies the ionospheric scintillation index (S4) and Ne profile observations obtained from the F7/C2 satellite constellation, to explore the variations of the ionospheric profile during geomagnetic events. These data are juxtaposed with a significant geomagnetic storm that affected SpaceX′s 2022 launches. Comparing the variation of the O/N2 ratio to the S4 distribution, a suppression of the S4 occurred when the O/N2 ratio decreased during the recovery phase. Additionally, the analysis illuminates the impacts of prompt penetration electric (PPE) fields and disturbance dynamo (DD) effects on the S4 index, as evidenced in the variation of the EIA crests. In summary, the integration of these three projects, each building on the achievements of the previous, provides a comprehensive and nuanced understanding of the variation and composition of the ionospheric profile, including disruptive factors and operative mechanisms.
關鍵字(中) ★ 電離層
★ 氣輝
★ 電漿不規則體
★ 磁暴
★ 深度學習
關鍵字(英) ★ Ionosphere
★ Airglow
★ Plasma Irregularity
★ Geomagnetic Storm
★ Deep Learning
論文目次 Abstract i
摘要 ii
誌謝 iii
List of Figures v
List of Tables vii
Chapter 1. Introduction 1
1.1 Overview of the Ionosphere 2
1.2 Motivations 5
1.3 Objectives 6
Chapter 2. Literature Review 8
2.1 Theoretical Background on The Ionosphere 8
2.2 Previous Studies 8
2.2.1 Studying The Ionosphere with Airglow Observations and Deep Learning Technique 8
2.2.2 Ionospheric Scintillation and The 2022 SpaceX Strom 9
Chapter 3. Project 1 and 2: Observational Study and Deep Learning-Based Data Reconstruction 12
3.1 Project 1: Retrieval of Ionospheric O+ Density Using Ground-based Airglow Observations 12
3.1.1 Photochemical Inversion Technique of 630.0 nm Emission 12
3.1.2 The Observing System Simulation Experiment (OSSE) and Sensitivity Analysis 20
3.1.3 Results and Comparison 22
3.2 Project 2: Reconstruction of Missing Airglow Intensity Data Using Machine Learning 30
3.2.1 Deep Learning Technique 32
3.2.2 Abel Inversion 36
3.2.3 Photochemical Inversion Technique of 135.6 nm Emission 38
3.2.4 Results and Validation 40
Chapter 4. Project 3: A Report on The 2022 SpaceX Storm and The S4 Index Response During February 3-4 Geomagnetic Event 50
4.1 Data and Methodology 51
4.2 Changes in S4 Distribution and Occurrence 52
4.3 The Depletion and Enhancement of the O/N2 Density ratio 56
4.4 Disturbed Co-located Ne Profiles and GIM-TEC Crests 58
Chapter 5. Discussion and Conclusion 65
Bibliography 68
Appendix 77
參考文獻 Aarons, J. (1991), The role of the ring current in the generation or inhibition of equatorial F layer irregularities during magnetic storms, Radio Sci., 26(4): 1131–1149. doi: 10.1029/91RS00473.
Adachi, T., M. Yamaoka, M. Yamamoto, Y. Otsuka, H. Liu, C.‐C. Hsiao, A. B. Chen, and R.‐R. Hsu (2010), Midnight latitude‐altitude distribution of 630 nm airglow in the Asian sector measured with FORMOSAT‐2/ISUAL, J. Geophys. Res., 115(A09315), doi: 10.1029/2009JA015147.
Aladjev, G. A., O. V. Evstafiev, V. S. Mingalev, G. I. Mingaleva, E. D. Tereshchenko, and B. Z. Khudukon (2001), Interpretation of ionospheric F-region structures in the vicinity of ionization troughs observed by satellite radio tomography, Ann. Geophys., 19(1): 25–36, doi: 10.5194/angeo-19-25-2001.
Angling, M. J., S. Elvidge, and S. B. Healy (2018), Improved model for correcting the ionospheric impact on bending angle in radio occultation measurements, Atmos. Meas. Tech., 11: 2213–2224, doi: 10.5194/amt-11-2213-2018.
Astafyeva, E., I. Zakharenkova, and P. Alken (2016), Prompt penetration electric fields and the extreme topside ionospheric response to the June 22-23, 2015 geomagnetic storm as seen by the Swarm constellation, Earth, Planets and Space, 68(1): 152. doi: 10.1186/s40623-016-0526-x.
Babani, L., S. Jadhav, and B. Chaudhari (2016), Scaled Conjugate Gradient Based Adaptive ANN Control for SVM-DTC Induction Motor Drive, Iliadis, L., Maglogiannis, I. (eds), AIAI 2016, IFIP Advances in Information and Communication Technology, Springer: Berlin/Heidelberg, Germany, 475: 384–395, doi: 10.1007/978-3-319-44944-9_33.
Bates, D. R. (1982), Airglow and auroras, Appl. Atom. Coll. Phys., 1, 149–224.
Bilitza, D., D. Altadill, V. Truhlik, V. Shubin, I. Galkin, B. Reinisch, and X. Huang (2017), International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions, Space Weather, 15: 418–429, doi: 10.1002/2016SW001593.
Bittencourt, J. A. and Y. Sahai (1979), Behavior of the [OI]6300 Å emission at the magnetic equator and its reaction to the vertical E × B drift velocity, J. Atmos. Terr. Phys., 41: 1233–1239, doi: 10.1016/0021-9169(79)90026-6.
Blanc, M., and A. D. Richmond (1980), The ionospheric disturbance dynamo, J. Geophys. Res., 85: 1669–1686, doi: 10.1029/JA085iA04p01669.
Burns, A. G., T. L. Killeen, and R. G. Roble (1991), a theoretical study of thermospheric composition perturbations during a impulsive geomagnetic storm, J. Geophys. Res., 96(A8): 14153–14167, doi: 10.1029/91JA00678.
Burns, A. G., T. L. Killeen, W. Deng, G. R. Carignan, and R. G. Roble (1995), Geomagnetic storm effects in the low- to middle-latitude upper thermosphere, J. Geophys. Res., 100(A8): 14673–14692, doi: 10.1029/94JA03232.
Cai, X., A. G. Burns, W. Wang, A. Coster, L. Qian, J. Liu, S. C. Solomon, R. W. Eastes, R. E. Daniell, and W. E. McClintock (2020), Comparison of GOLD nighttime measurements with total electron content: Preliminary results, J. Geophys. Res. (Space Phys.), 125, e2019JA027767, doi: 10.1029/2019JA027767.
Cai, X., A. G. Burns, W. Wang, L. Qian, J. Liu, S. C. Solomon, Richard W. Eastes, R. E. Daniell, C. R. Martinis, W. E. McClintock, and I. S. Batista (2021), Observation of postsunset OI 135.6 nm radiance enhancement over South America by the GOLD mission, J. Geophys. Res. (Space Phys.), 126: e2020JA028108, doi: 10.1029/2020JA028108.
Carter, B. A., E. Yizengaw, R. Pradipta, J. M. Retterer, K. Groves, C. Valladares, R. Caton, C. Bridgwood, R. Norman, and K. Zhang (2016), Global equatorial plasma bubble occurrence during the 2015 St. Patrick’s Day storm, J. Geophys. Res. (Space Phys.), 121: 894–905, doi: 10.1002/2015JA022194.
Chakrabarti, S. (1998), Ground based spectroscopic studies of sunlit airglow and aurora, J. Atmos. Sol. Terr. Phys., 60: 1403–1423, doi: 10.1016/S1364-6826(98)00060-1.
Chang, L. C., C. -H. Lin, J. Yue, J. -Y. Liu, and J. -T. Lin (2013), Stationary planetary wave and nonmigrating tidal signatures in ionospheric wave 3 and wave 4 variations in 2007–2011 FORMOSAT-3/COSMIC observations, J. Geophys. Res. (Space Phys.), 118, 6651–6665, doi: 10.1002/jgra.50583.
Chapman, S. (1931), The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth part II. Grazing incidence, Proc. Phys. Soc., 43: 483–501, doi: 10.1088/0959-5309/43/5/302.
Chapman, S. (1953), Note on the Grazing-Incidence Integral Ch(X,χ) for Monochromatic Absorption in an Exponential Atmosphere, Proc. Phys. Soc. Sect., B1953(66): 710–712, doi: 10.1088/0959-5309/43/5/302.
Chen, S. P., C. H. Lin, P. K. Rajesh, J. Y. Liu, R. Eastes, M. Y. Chou, and J. M. Choi (2021), Near real-time global plasma irregularity monitoring by FORMOSAT-7/COSMIC-2, J. Geophys. Res. (Space Phys.), 126(e2020JA028339), doi: 10.1029/2020JA028339.
Cheng, C.-C., J.-Y. Liu, C. C. H. Lin, and Y.-C. Cheng (2022), Daily dynamo electric fields derived by using equatorial ionization anomaly crests of the total electron content, Space Weather, 20, e2022SW003073, doi: 10.1029/2022SW003073.
Chou, M.-Y., N. M. Pedatella, Q. Wu, J. D. Huba, C. C. H. Lin, W. S. Schreiner, J. J. Braun, R. W. Eastes, and J. Yue (2020), Observation and simulation of the development of equatorial plasma bubbles: Post-sunset rise or upwelling growth? J. Geophys. Res. Space Phys., 125, e2020JA028544, doi: 10.1029/2020JA028544.
Dabas, R. (2012), Ionosphere and its influence on radio communications, Resonance, 5: 28–43, doi: 10.1007/BF02867245.
Datta‐Barua, S., Altshuler, E., Walter, T., and Pullen, S. (2021), Ionospheric Scintillation Effects on Satellite Navigation, 493–510, doi: 10.1002/9781119815617.ch20.
Danzer, J., B. Scherllin-Pirscher, and U. Foelsche (2013), Systematic residual ionospheric errors in radio occultation data and a potential way to minimize them, Atmos. Meas. Tech., 6: 2169–2179, doi: 10.5194/amt-6-2169-2013.
Danzer, J., S. B. Healy, and I. D. Culverwell (2015), A simulation study with a new residual ionospheric error model for GPS radio occultation climatologies, Atmos. Meas. Tech., 8: 3395–3404, doi: 10.5194/amt-8-3395-2015.
Danzer, J., M. Schwaerz, G. Kirchengast, and S. B. Healy (2020), Sensitivity analysis and impact of the kappa-correction of residual ionospheric biases on radio occultation climatologies, Earth and Space Sci., 7: e2019EA000942, doi: 10.1029/2019EA000942.
Di Leo, G., and F. Sardanelli (2020), Statistical significance: p value, 0.05 threshold, and applications to radiomics—reasons for a conservative approach. European Radiology Experimental, 4: 18. doi:10.1186/s41747-020-0145-y.
Duann, Y., L. C. Chang, C.-Y. Lin, Y.-C. Hsieh, Y.-C. Wen, C. C. H. Lin, and J.-Y. Liu (2023), A Methodology of Retrieving Volume Emission Rate from Limb-Viewed Airglow Emission Intensity by Combining the Techniques of Abel Inversion and Deep Learning, Atmosphere 14 (1): 74, doi: 10.3390/atmos14010074.
Duncan, R. A. (1969), F-region seasonal and magnetic-storm behaviour, J. Atmosph. Terr. Phys., 31(1): 59–70, doi:10.1016/0021-9169(69)9008.1-6.
Dymond, K. F., A. C. Nicholas, S. A. Budzien, A. W. Stephan, C. Coker, M. A. Hei, K. M. Groves (2017), Ionospheric-thermospheric UV tomography: 2. Comparison with incoherent scatter radar measurements, Radio Sci., 52:357–366, doi: 10.1002/2015RS005873.
Eastes, R.W., W. E. McClintock, A. G. Burns, D. N. Anderson, L. Andersson, M. Codrescu, J. T. Correira, R. E. Daniell, S. L. England, J. S. Evans, J. Harvey, A. Krywonos, J. D. Lumpe, A. D. Richmond, D. W. Rusch, O. Siegmund, S. C. Solomon, D. J. Strickland, T. N. Woods, A. Aksnes, S. A. Budzien, K. F. Dymond, F. G. Eparvier, C. R. Martinis, and J. Oberheide (2017), The Global-Scale Observations of the Limb and Disk (GOLD) Mission, Space Sci. Rev., 212: 383–408, doi:10.1007/s11214-017-0392-2.
Eastes, R. W., S. C. Solomon, R. E. Daniell, D. N. Anderson, A. G. Burns, S. L. England, C. R. Martinis, and W. E. McClintock (2019), Global-Scale Observations of the Equatorial Ionization Anomaly, Geophys. Res. Lett., 46: 9318–9326, doi: 10.1029/2019GL084199.
Eastes, R. W., W. E. McClintock, A. G. Burns, D. N. Anderson, L. Andersson, S. Aryal, S. A. Budzien, X. Cai, M. V. Codrescu, J. T. Correira, R. E. Daniell, K. F. Dymond, S. L. England, F. G. Eparvier, J. S. Evans, H. Foroosh, Q. Gan, K. R. Greer, D. K. Karan, A. Krywonos, F. I. Laskar, J. D. Lumpe, C. R. Martinis, J. B. McPhate, J. Oberheide, O. H. Siegmund, S. C. Solomon, V. Veibel, and T. N. Woods (2020), Initial Observations by the GOLD Mission, J. Geophys. Res. (Space Phys.), 125, e2020JA027823, doi: 10.1029/2020JA027823.
Elgowainy, A., and N. Ashgriz (1997), The Rayleigh-Taylor instability of viscous fluid layers, Phys. of Fluids, 9(6): 1635–1649, doi: 10.1063/1.869283.
Fejer, B. G., Spiro, R. W., R. A. Wold, and J. C. Foster (1990), Latitudinal variations of penetration electric fields during magnetically disturbed periods: 1986 sundial observations and model results, Ann. Geophys., 8: 441–454.
Fejer, B. G. (1996), Natural ionospheric plasma waves. (Kohl, n. h. and Rüster, r. and Schlegel, k. ed.), Max-Planck Institute For Aeronomy, Katlenburg-Lindau, Germany: European Geophysical Society.
Fejer, B. G., L. Scherliess, and E. R. de Paula (1999), Effects of the vertical 306 plasma drift velocity on the generation and evolution of equatorial spread F, J. Geophys. Res., 104(A9): 19859–19870, doi:10.1029/1999JA900271.
Fennelly, J. A., D. G. Torr, P. G. Richards, M. R. Torr, and W. E. Sharp (1991), A method for the retrieval of atomic oxygen density and temperature profiles from ground-based measurements of the O+(2D-2P) 7320-angstrom twilight airglow, J. Geophys. Res., 96(A2): 1263-1273, ISSN: 0148-0227.
Fishkova, L. M. (1983), Nighttime airglow of the mid-latitude Earth upper atmosphere, Tbilisi, Metsniereba Publ., 271 (In Russian).
Fuller-Rowell, T. J., G. H. Millward, A. D. Richmond, and M.V. Codrescu (2002), Storm-time changes in the upper atmosphere at low latitudes, J. Atmos. Sol. Terr. Phys., 64: 1383–1391, doi: 10.1016/S1364-6826(02)00101-3.
Gavin, H. P. (2019), The Levenberg-Marquardt Algorithm for Nonlinear Least Squares Curve-Fitting Problems, Duke University: Durham, NC, USA, 19.
Geddes, G., E. Douglas, S. C. Finn,T. Cook, and S. Chakrabarti (2016), Inverting OII 83.4 nm dayglow profiles using Markov chain radiative transfer, J. Geophys. Res. (Space Phys.), 121: 11,249–11,260, doi: 10.1002/2016JA023168.
Gentile, L. C., Burke, W. J., and Rich, F. J. (2006), A global climatology for equatorial plasma bubbles in the topside ionosphere, Ann. Geophys., 24: 163–172, doi: 10.5194/angeo-24-163-2006.
Hanson, W. B. (1969), Radiative recombination of atomic oxygen ions in the nighttime F region, J. Geophys. Res., 74 (14): 3720–3722, doi: 0.1029/JA074i014p03720.
Hanson, W. B. (1970), A comparison of the oxygen ion-ion neutralization and radiative recombination mechanisms for producing the ultraviolet nightglow, J. Geophys. Res., 75 (22): 4343–4346, doi: 10.1029/JA075i022p04343.
Hapgood, M., H. Liu, and N. Lugaz (2022), SpaceX—Sailing Close to 319 the Space Weather? Space Weather, 20(3): e03074, doi: 10.1029/2022SW003074.
Hargreaves, J. K. (1992), The Solar-Terrestrial Environment: An Introduction to Geospace - the Science of the Terrestrial Upper Atmosphere, Ionosphere, and Magnetosphere (Cambridge Atmospheric and Space Science Series), Cambridge Univ. Press.: New York, USA, doi: 10.1017/CBO9780511628924.
Healy, S. B., and I. D. Culverwell (2015), A modification to the standard ionospheric correction method used in GPS radio occultation, Atmos. Meas. Tech., 8: 3385–3393, doi: 10.5194/amt8-3385-2015.
Herrero, F. A., and Jr. Meriwether (1980), 6300-Å airglow meridional intensity gradients, J. Geophys. Res., 85 (A8): 4191– 4204, doi: 10.1029/JA085iA08p04191.
Hsieh, M. C., G. H. Huang, A. V. Dmitriev, C. H. Lin (2022), Deep Learning Application for Classification of Ionospheric Height Profiles Measured by Radio Occultation Technique, Remote Sens., 14(18): 4521, doi: 10.3390/rs14184521.
Huang, C. Y., W. J. Burke, J. S. Machuzak, L. C. Gentile, and P. J. Sultan (2002), Equatorial plasma bubbles observed by DMSP satellites during a full solar cycle: Toward 323 a global climatology, J. Geophys. Res. (Space Phys.), 107(A12): 1434, doi: 10.1029/2002JA009452.
Huang, F. Q., J. H. Lei, C. Xiong, J. H. Zhong, and G. Z. Li (2021), Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016, Earth Planet. Phys., 5(5): 416–426, doi: 10.26464/epp2021043.
Hyndman, R. J., and Koehler, A. B. (2006), Another look at measures of forecast accuracy, Int. J. Forecast., 22(4): 679–688, ISSN: 0169-2070, doi: 10.1016/j.ijforecast.2006.03.001.
Jakowski, N. and M. M. Hoque (2021), Global equivalent slab thickness model of the Earth’s ionosphere, J. Space Weather Space Clim., 11(10), doi: 10.1051/swsc/2020083.
Karan, D. K., R. W. Eastes, R. E. Daniell, C. R. Martinis, and W. E. McClintock (2023), GOLD Mission’s Observation About the Geomagnetic Storm Effects on the Nighttime Equatorial Ionization anomaly (EIA) and Equatorial Plasma Bubbles (EPB) During a Solar Minimum Equinox, Space Weather, 21(3), e2022SW003321, doi: 10.1029/2022SW003321.
Kelly, M. C. (2009), The earth’s ionosphere: plasma physics and electrodynamics, International geophys. (2nd ed.), Elsevier.
Khmyrov, G. M., I. A. Galkin, A. V. Kozlov, B. W. Reinisch, J. McElroy, and C. Dozois (2008), Exploring digisonde ionogram data with SAO-X and DIDBase, Radio Sounding and Plasma Physics, AIP Conf. Proc., 974: 175–185, doi: 10.1063/1.2885027.
Khomich, V. Y., Semenov A. I., Shefov N. N. (2008), Processes Responsible for the Occurrence of the Airglow, In: Airglow as an Indicator of Upper Atmospheric Structure and Dynamics, Springer, Berlin, Heidelberg, doi: 10.1007/978-3-540-75833-4_2.
Kil, H., W. K. Lee, J. Shim, L. J. Paxton, Y. Zhang (2013), The effect of the 135.6 nm emission originated from the ionosphere on the TIMED/GUVI O/N2 ratio, J. Geophys. Res., 118: 859–865, doi: 10.1029/2012JA018112.
Knudsen, W. C. (1970), Tropical ultraviolet nightglow from oxygen ion-ion neutralization, J. Geophys. Res., 75 (19): 3862– 3866, doi: 10.1029/JA075i019p03862.
Krall, J., J. D. Huba, and D. C. Fritts (2013), On the seeding of equatorial spread F by gravity waves, Geophys. Res. Lett., 40: 661– 664, doi: 10.1002/grl.50144.
Lagos, P., W. Bellew, S. M. Silverman (1963), The airglow 6300 [OI] emission theoretical considerations on the luminosity profile, J. Atmos. Terr. Phys., 25: 581–587, doi: 10.1016/0021-9169(63)90179-X.
Lamarche, L., Deshpande, K., Zettergren, M. (2022), Observations and Modeling of Scintillation in the Vicinity of a Polar Cap Patch, J. Space Weather. Space Clim., 12, doi: 10.1051/swsc/2022023.
Laskar, F. I., R. W. Eastes, C. R. Martinis, R. E. Daniell, N. M. Pedatella, A. G. Burns, W. McClintock, L. P. Goncharenko, A. Coster, M. A. Milla, W. Wang, C. E. Valladares, and M. V. Codrescu (2020), Early morning equatorial ionization anomaly from GOLD observations, J. Geophys. Res. (Space Phys.), 125, e2019JA027487, doi: 10.1029/2019JA027487.
Leonovich, A. S. and D. A. Kozlov (2012), Slow magnetosonic waves generated in the plasmasphere by ionospheric terminator motion, Sun and Geosphere, 7(2): 109–115, ISSN: 1819–0839.
Li, M., X. Yue, W. Wan, and W. S. Schreiner (2020), Characterizing Ionospheric Effect on GNSS Radio Occultation Atmospheric Bending Angle, J. Geophys. Res. (Space Phys.), 125, e2019JA027471, doi: 10.1029/2019JA027471.
Li, M. and Yue, X. (2021), Statistically analyzing the effect of ionospheric irregularity on GNSS radio occultation atmospheric measurement, Atmos. Meas. Tech., 14: 3003–3013, doi: 10.5194/amt-14-3003-2021, 2021.
Li, G., B. Ning, B. Zhao, L. Liu, J. Y. Liu, and K. Yumoto (2008), Effects of geomagnetic storm on GPS 328 ionospheric scintillations at Sanya, J. Atmos. Sol.-Terr. Phys., 70(7): 1034–329, doi: 10.1016/j.jastp.2008.01.003.
Lien, G. Y., C. H. Lin, Z. M. Huang, W. H. Teng, J. H. Chen, C. C. Lin, H. H. Ho, J. Y. Huang, J. S. Hong, C. P. Cheng, and C. Y. Huang (2021), Assimilation Impact of Early FORMOSAT-7/COSMIC-2 GNSS Radio Occultation Data with Taiwan’s CWB Global Forecast System, Mon. Weather Rev., 149(7): 2171–2191, doi: 10.1175/MWR-D-20-0267.1.
Lin, C. H., A. D. Richmond, R. A. Heelis, G. J. Bailey, G. Lu, J. Y. Liu, H. C. Yeh, and S. Y. Su (2005a), Theoretical study of the low- and midlatitude ionospheric electron density enhancement during the October 2003 superstorm: Relative importance of the neutral wind and the electric field, J. Geophys. Res. (Space Phys.), 110(A12): A12312, doi: 10.1029/2005JA011304.
Lin, C. H., A. D. Richmond, J. Y. Liu, H. C. Yeh, L. J. Paxton, G. Lu, H. F. Tsai, and S. Y. Su (2005b), Large-scale variations of the low-latitude ionosphere during the october–november 2003 super-storm: Observational results, J. Geophys. Res. (Space Phys.), 110(A09S28), doi: 10.1029/2004JA010900.
Lin, C. H., C. C. Hsiao, J. Y. Liu, and C. H. Liu (2007), Longitudinal structure of the equatorial ionosphere: Time evolution of the four-peaked EIA structure, J. Geophys. Res. Space Phys., 112(A12): A12305, doi: 10.1029/2007JA012455.
Link, R., J. C. McConnell, and G. G. Shepherd (1981), A self-consistent evaluation of the rate constants for the production of the OI 6300 Å airglow, Planet. Space Sci., 29 (6), 589–594, doi: 10.1016/0032-0633(81)90106-9.
Link, R., and L. L. Cogger (1988), A reexamination of the OI 6300 Å nightglow, J. Geophys. Res., 93(A9): 9883– 9892, doi:10.1029/JA093iA09p09883.
Liu, J. Y., H. F. Tsai, C. C. Wu, C.L. Tseng, L.-C. Tsai, W. H. Tsai, K. Liou, J. K. Chao (1999), The effect of geomagnetic storm on ionospheric total electron content at equatorial anomaly region, Adv. Space Res., 24, 1491–1494, doi: 10.1016/S0273-1177(99)00712-7.
Liu, J. Y., Yang, W. H., Lin, C. H. et al. (2013), A statistical study on the characteristics of ionospheric storms in the equatorial ionization anomaly region: GPS-TEC observed over Taiwan, J. Geophys. Res. (Space Phys.), 118(6): 3856–3865, doi:10.1002/jgra.50366.
Liu, C., G. Kirchengast, Y. Sun, K. Zhang, R. Norman, M. Schwaerz, W. Bai, Q. Du, and Y. Li (2018), Analysis of ionospheric structure influences on residual ionospheric errors in GNSS radio occultation bending angles based on ray tracing simulations, Atmos. Meas. Tech., 11: 2427–2440, doi: 10.5194/amt11-2427-2018.
Liu, C., G. Kirchengast, S. Syndergaard, M. Schwaerz, J. Danzer, and Y. Sun (2020), New Higher-Order Correction of GNSS RO Bending Angles Accounting for Ionospheric Asymmetry: Evaluation of Performance and Added Value, Remote Sen., 12: 3637, doi: 10.3390/rs12213637.
Lu, G., A. D. Richmond, B. A. Emery, and R. G. Roble (1995), Magnetosphere-ionosphere-thermosphere coupling: Effect of neutral winds on energy transfer and field-aligned current, J. Geophys. Res., 100(A10): 19643–19659, doi: 10.1029/95JA00766.
Mannucci, A. J., C. O. Ao, X. Pi, and B. A. Iijima (2011), The impact of large-scale ionospheric structure on radio occultation retrievals, Atmos. Meas. Tech., 4: 2837–2850, doi: 10.5194/amt4-2837-2011.
Mason, E. I. and K. L. Kniezewski (2022), To rain or not to rain: Correlating goes flare class and coronal rain statistics, ApJ, 939(1): 21, doi: 10.3847/1538-4357/ac94d7.
McClintock, W. E., R. W. Eastes, A. C. Hoskins, O. H. W. Siegmund, McPhate, J. B. A. Krywonos, S. C. Solomon, A. G. Burns (2020), Global-Scale Observations of the Limb and Disk Mission Implementation: 1. Instrument Design and Early Flight Performance, J. Geophys. Res., 125, e2020JA027797, doi: 10.1029/2020JA027797.
McClintock, W. E., R.W. Eastes, S. Beland, K. B. Bryant, A. G. Burns, J. Correira, R. E. Danielll, J. S. Evans, C. S. Harper, D. K. Karan, A. Krywonos, J. D. Lumpe, T. M. Plummer, S. C. Solomon, B. A. Vanier, V. Veibel (2020), Global-Scale Observations of the Limb and Disk Mission Implementation: 2. Observations, Data Pipeline, and Level 1 Data Products, J. Geophys. Res., 125, e2020JA027809, doi: 10.1029/2020JA027809.
Meléndez-Alvira, D. J., R. R. Meier, J. M. Picone, P. D. Feldman, and B. M. McLaughlin (1999), Analysis of the oxygen nightglow measured by the Hopkins Ultraviolet Telescope: Implications for ionospheric partial radiative recombination rate coefficients, J. Geophys. Res., 104 (A7): 14901– 14913, doi: 10.1029/1999JA900136.
Mende, S. B., H. U. Frey, K. Rider, C. Chou, S. E. Harris, O. H. W. Siegmund, S. L. England, C. Wilkins, W. Craig, T. J. Immel, P. Turin, N. Darling, J. Loicq, P. Blain, E. Syrstad, B. Thompson, R. Burt, J. Champagne, P. Sevilla, and S. Ellis (2017), The Far Ultra-Violet Imager on the Icon Mission, Space Sci. Rev., 212: 655–696, doi: 10.1007/s11214-017-0386-0.
Mikhalev, A. V. (2018), Seasonal and interannual variations in the OI 630 nm atmospheric emission as derived from observations over Eastern Siberia in 2011–2017, Solar-Terr. Phys., 4(2): 58–62, doi: 10.12737/stp-42201809.
Miloch, W. J., Jin, Y., Xiong, C., Kervalishvili, G., Spicher, A., Clausen, L. B.~N., Stolle, C. (2018), Ionospheric plasma irregularities studied with Swarm satellites, E3S Web of Conferences, 62: 01009, doi: 10.1051/e3sconf/20186201009.
Nayak, C., L.-C. Tsai, S.-Y. Su, I. A. Galkin, R.G. Caton, and K. M. Groves (2017), Suppression of ionospheric scintillation during St. Patrick’s Day geomagnetic super storm as observed over the anomaly crest region station Pingtung, Taiwan: A case study, Adv. Space Res., 60(2): 396-405, doi: 10.1016/j.asr.2016.11.036.
Ngwira, C. M., J.-B. Habarulema, E. Astafyeva, E. Yizengaw, O. F. Jonah, G. Crowley, A. Gisler, V. Coffey (2019), Dynamic response of ionospheric plasma density to the geomagnetic storm of 22-23 June 2015, J. Geophys. Res. (Space Phys.), 124(8): 7123–7139, doi:10.1029/2018JA026172.
Nelson, G. J. and L. L. Cogger (1971), Dynamical behavior of the nighttime ionosphere at Arecibo, J. Atmos. Terr. Phys., 33: 1711– 1726, doi:10.1016/0021-9169(71)90219-4.
Papitashvili, N. E., and J. H. King (2020), Omni hourly data set [data set] accessed on 2022-september-19, NASA Space Physics Data Facility, doi: 10.48322/1shr- ht18.
Peterson, V. L., T. E. Van Zandt, and R. B. Norton (1966), F region nightglow emissions of atomic oxygen: 1. Theory, J. Geophys. Res., 71: 2255–2265, doi: 10.1029/JZ071i009p02255.
Pi, X., A. J. Mannucci, U. J. Lindqwister, C. -M. Ho (1997), Monitoring of global ionospheric irregularities using the Worldwide GPS Network, Geophys. Res. Lett., 24:2283–2286, doi:10.1029/97GL02273.
Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin (2002), NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107(A12): 1468, doi: 10.1029/2002JA009430.
Proelss, G. W. (1987), Storm-induced changes in the thermospheric composition at middle latitudes, Planet. Space Sci., 35(6): 807–811, doi: 10.1016/0032-0633(87)90041-9.
Qin, J., J. J. Makela, F. Kamalabadi, and R. R. Meier (2015), Radiative transfer modeling of the OI 135.6 nm emission in the nighttime ionosphere, J. Geophys. Res. (Space Phys.), 120: 10116–10135, doi: 10.1002/2015JA021687.
Rajesh, P. K., J. Y. Liu, C. Y. Chiang, A. B. Chen, W. S. Chen, H. T. Su, R. R. Hsu, C. H. Lin, M.-L. Hsu, J. H. Yee, J. B. Nee (2009), First results of the limb imaging of 630.0 nm airglow using FORMOSAT-2/Imager of Sprites and Upper Atmospheric Lightnings, J. Geophys. Res., 114: A10302, doi:10.1029/2009JA014087.
Rajesh, P. K., J. Y. Liu, M. L. Hsu, C. H. Lin, K. I. Oyama, and L. J. Paxton (2011), Ionospheric electron content and NmF2 from nighttime OI 135.6 nm intensity, J. Geophys. Res., 116: A02313, doi:10.1029/2010JA015686.
Rajesh, P. K., J. Y. Liu, C. H. Lin, A. B. Chen, R. R. Hsu, and H. T. Su (2012), Airglow observation over equatorial and low-latitudes in the extreme solar minimum of 2007-2008, IJRSP, 41(2): 148–154.
Rajesh, P. K., C. H. Lin, C. Y. Lin, C. H. Chen, J. Y. Liu, T. Matsuo, S. P. Chen, W. H. Yeh, and C. Y. Huang (2021), Extreme Positive Ionosphere 365 Storm Triggered by a Minor Magnetic Storm in Deep Solar Minimum Revealed by FORMOSAT-7/COSMIC-2 and GNSS Observations, J. Geophys. Res. (Space Phys.), 126(2): e28261, doi: 10.1029/2020JA028261.
Reinisch, B. W. and X. Huang (1983), Automatic calculation of electron density profiles from digital ionograms, 3, Processing of bottomside ionograms, Radio Sci., 18: 477–492, doi: 10.1029/RS018i003p00477.
Reinisch, B. W., I. A. Galkin, G. Khmyrov, A. Kozlov, and D. F. Kitrosser (2004), Automated collection and dissemination of ionospheric data from the digisonde network, Adv. Radio Sci., 2: 241–247, doi: 10.5194/ars-2-241-2004.
Richards, S. (2020), A Hermite-spline model of post-retirement mortality, Scand. Actuar. J., Taylor and Francis: 110–127, doi:10.1080/03461238.2019.1642239.
Richmond, A. D., C. Peymirat, and R. G. Roble (2003), Long-lasting disturbances in the equatorial ionospheric electric field simulated with a coupled magnetosphere-ionosphere-thermosphere model, J. Geophys. Res., 108(A3): 1118, doi: 10.1029/2002JA009758.
Rodríguez-Zuluaga, J., C. Stolle, Y. Yamazaki, C. Xiong, and S. L. England (2021), A synoptic-scale wavelike structure in the nighttime equatorial ionization anomaly, Earth and Space Sci., 8: e2020EA001529, doi: 10.1029/2020EA001529.
Romanova, N., N. B. Crosby, and V. Pilipenko (2013), The Relationship of 373 Satellite Anomalies and Launch Failures to the Space Weather, Int. J. Geo. phys., 2013(297310), doi: 0.1155/2013/297310.
Ruder, S. (2016), An overview of gradient descent optimization algorithms, arXiv, 1609.04747, doi: 10.48550/arXiv.1609.04747.
Ruston, B., and S. Healy (2021), Forecast impact of FORMOSAT-7/COSMIC-2 GNSS Radio Occultation Measurements, Atmos. Sci. Lett., 22(e1019), doi: 10. 3771002/asl.1019.
Sai Gowtam, V. and S. Tulasi Ram (2017), An Artificial Neural Network based Ionospheric Model to predict NmF2 and hmF2 using long-term data set of FORMOSAT-3/COSMIC radio occultation observations: Preliminary results, J. Geophys. Res. (Space Phys.), 122: 11,743–11,755, doi: 10.1002/2017JA024795.
Savigny, C. (2017), Airglow in the Earth atmosphere: basic characteristics and excitation mechanisms, ChemTexts, 3, doi: 10.1007/s40828-017-0051-y.
Schaer, S., G. Beutler, M. Rothacher, and T.A. Springer (1996), Daily Global Ionosphere Maps Based on GPS Carrier Phase Data Routinely Produced by the CODE Analysis Center.
Schreiner, W. S., J. P. Weiss, R. A. Anthes, J. Braun, V. Chu, J. Fong, D. Hunt, Y. H. Kuo, T. Meehan, W. Serafino, J. Sjoberg, S. Sokolovskiy, E. Talaat, T. K. Wee, and Z. Zeng (2020), COSMIC-2 Radio Occultation Constellation: First Results, Geophys. Res. Lett., 47(e2019GL086841), doi: 10.1029/2019GL086841.
Seaton, M. J. (1956), A possible explanation of the drop in f-region critical densities accompanying major ionospheric storms, J. Atmosph. Terr. Phys., 8(1): 122–124, doi: 10.1016/0021-9169(56)90102-7.
Sobral, J. H. A., H. Takahashi, M. A. Abdu, P. Muralikrishna, Y. Sahai, C. J. Zamlutti, E. R. de Paula, and P. P. Batista (1993), Determination of the quenching rate of the O(¹D) by O(³P) from rocket-borne optical (630 nm) and electron density data, J. Geophys. Res., 98, doi: 10.1029/92JA01839.
Solomon, S. C., L. Andersson, A. G. Burns, R. W. Eastes, C. Martinis, W. E. McClintock, A. D. Richmond (2020), Global-Scale Observations and Modeling of Far-Ultraviolet Airglow During Twilight, J. Geophys. Res. Space Sci., 125, e2019JA027645, doi: 10.1029/2019JA027645.
Spiro, R. W., R. A. Wolf, and B. G. Fejer (1988), Penetration of high latitude electric fields effects to low latitudes during SUNDIAL 1984, Ann. Geophys., ISSN: 0755-0685, 6(1), 39–50.
Stankov, S. M., N. Jakowski, S. Heise, P. Muhtarov, I. Kutiev, and R. Warnant (2003), A new method for reconstruction of the vertical electron density distribution in the upper ionosphere and plasmasphere, J. Geophys. Res., 108(A5): 1164, doi: 10.1029/2002JA009570.
Straus, P., W. Schreiner, J. Santiago, E. Talaat, and C. L. Lin (2020), FORMOSAT-7/COSMIC-2 TGRS space weather provisional data release 1, 4–7.
Strickland, D. J., R. E. Daniell, and J. D. Craven (2001), Negative ionospheric storm coincident with DE 1-observed thermospheric disturbance on October 14, 1981, J. Geophys. Res., 106(A10): 21049–21062, doi: 10.1029/2000JA000209.
Sun, Y. Y., J. Y. Liu, and C. Y. Lin (2012), A statistical study of low latitude f region irregularities at brazilian longitudinal sector response to geomagnetic storms during post-sunset hours in solar cycle 23, J. Geophys. Res., 117(A03333), doi: 10.1029/2011JA017419.
Tam, S. W. Y., C.-Y. Chiang, K.-C. Huang, and T.-F. Chang (2021), Retrieval of airglow emission rates in analytical form for limb-viewing satellite observations at low latitudes, J. Geophys. Res. Space Phys., 126: e2021JA029490, doi: 10.1029/2021JA029490.
Tang, S., J. Li, and L. Tickle (2022), A Hermite spline approach for modelling population mortality, Ann. Actuar. Sci., Cambridge University Press: 1–42, doi: 10.1017/S1748499522000173.
Thandlam, V. and K. Venkatramana (2018), Enhancing Vertical Resolution of Satellite Atmospheric Profile Data: A Machine Learning Approach, Int. J. Adv. Res., 6: 542–550, doi: 10.21474/IJAR01/7836.
Tinsley, B. A., A. B. Christensen, J. Bittencourt, H. Gouveia, P. D. Angreji, and H. Takahashi (1973), Excitation of oxygen permitted line emissions in the tropical nightglow, J. Geophys. Res., 78 (7): 1174–1186, doi: 10.1029/JA078i007p01174.
Titheridge, J. E. (1973), The slab thickness of the mid-latitude ionosphere, Pergamon Press, 21(10): 1775–1793, doi: 10.1016/0032-0633(73)90168-2.
Titheridge, J. E. (1985), Ionogram analysis: Least squares fitting of a Chapman-layer peak, Radio Sci., 20: 247–256, doi: 10.1029/RS020i002p00247.
Transtrum, M. K., J. P. Sethna (2012), Improvements to the Levenberg-Marquardt algorithm for nonlinear least-squares minimization, arXiv, 1201.5885, doi: 10.48550/ARXIV.1201.5885.
Tsagouri, I. (2022), Space Weather Effects on the Earth’s Upper Atmosphere: Short Report on Ionospheric Storm Effects at Middle Latitudes, Atmosphere, 13(2):346, doi: 10.3390/atmos13020346.
Tsunoda, R. T. (1985), Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region pedersen conductivity, J. Geophys. Res., 90(A1): 447–456, doi: 10.1029/ 869 JA090iA01p00447.
Tsunoda, R. T., T. T. Nguyen, and M. H. Le (2015), Effects of tidal forcing, conductivity gradient, and active seeding on the climatology of equatorial spread F over Kwajalein, J. Geophys. Res. Space Phys., 120: 632–653, doi: 10.1002/2014JA020762.
Wee, T. K. (2018), A variational regularization of Abel transform for GPS radio occultation, Atmos. Meas. Tech., 11: 1947–1969, doi: 10.5194/amt-2017-228.
Wei, Y., B. Zhao, G. Li, and W. Wan (2015), Electric field penetration into Earth’s ionosphere: a brief review for 2000–2013, Sci. Bull., 60, doi: 10.1007/s11434-015-0749-4.
Wilamowski, B. M. and H. Yu (2010), Improved Computation for Levenberg-Marquardt Training, IEEE Trans. Neural Netw., 21(6): 930-937, doi: 10.1109/TNN.2010.2045657.
Xiao, Z., J. Wang, J. Li, B. Zhao, L. Hu, L. Liu (2020), Deep-learning for ionogram automatic scaling, Adv. Space Res., 66: 942–950, doi: 0.1016/j.asr.2020.05.009.
Yao, S., X. Lu, and Z. Wei (2013), A Conjugate Gradient Method with Global Convergence for Large-Scale Unconstrained Optimization Problems, J. Appl. Math., 2013 (730454), doi: 10.1155/2013/730454.
Yeh, K. -C. and C. -H Liu (1982), Radio wave scintillations in the ionosphere, Proc. IEEE, 70(4): 324-360, doi: 10.1109/PROC.1982.12313.
Yu, H. and B. M. Wilamowski (2018), Intelligent Systems: Levenberg-Marquardt Training, CRC Press: Boca Raton, FL, USA, 1–16.
Yue, X., W. S. Schreiner, N. M. Pedatella, and Y. H. Kuo (2016), Characterizing GPS radio occultation loss of lock due to ionospheric weather, Space Weather, 14: 285–299, doi: 10.1002/2015sw001340.
Younas, W., M. Khan, C. Amory-Mazaudier et al. (2022), Middle and low latitudes hemispheric asymmetries in σo/n2 and tec during intense magnetic storms of solar cycle 24, Adv. Space Res., 69(1): 220–235, doi: 10.1016/j.asr.2021.10.027.
Zhang, D., J. B. Cao, X. H. Wei, and L. Y. Li (2015), New technique to calculate electron Alfvén layer and its application in interpreting geosynchronous access of PS energetic electrons, J. Geophys. Res. (Space Phys.), 120(3): 1675–1683, doi: 10.1002/2014JA020670.
Zeng, Z. and S. Sokolovskiy (2010), Effect of sporadic E clouds on GPS radio occultation signals, Geophys. Res. Lett., 37, L18817, doi: 10.1029/2010gl044561.
指導教授 張起維(Loren C. Chang) 審核日期 2023-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明