博碩士論文 108881604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:44.220.62.183
姓名 安媞卡(Titi Rindi Antika)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 AlaRS透過其C端區域結合L構型tRNA的肘部
(Evolutionary gain of C-Ala enables AlaRS to target the tRNAAla elbow)
相關論文
★ Kineosphaera limosa 菌株中 phaC 基因之序列分析★ 剪力和組織蛋白去乙醯酶在動靜脈廔管失效扮演的角色
★ Classification of powdery mildews on ornamental plants in northern Taiwan★ 秀麗隱桿線蟲線粒體AlaRS通過非傳統模式識別T型無臂tRNAAla
★ Bacillus thuringiensis contains two prolyl-tRNA synthetases of different origins★ Recognition of tRNA His isoacceptors by human HisRS isoforms
★ Functional replacement of yeast nuclear and mitochondrial RNase P by a protein-only RNase P★ Functional characterization of a noncanonical ProRS in Toxoplasma gondii
★ tRNA aminoacylation by a naturally occurring mini-AlaRS★ Functional Repurposing of C-Ala Domains
★ Recognition of a non-canonical tRNAAla by a non-canonical alanyl-tRNA synthetase★ 探討Alanyl-tRNA synthetase的演化及專一性
★ 酵母菌valyl-tRNA synthetase附加區段的 生物功能之探討★ 探討酵母菌glycyl-tRNA合成酵素的非傳統生物功能
★ 探討酵母菌Valyl-tRNA synthetase的生化活性★ 酵母菌轉譯起始機制的研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-1以後開放)
摘要(中) Alanyl-tRNA synthetase (AlaRS)是細胞內必要的轉譯酵素之一,它的主要功能是將丙胺酸(alanine)接到相對應的tRNAAla上。AlaRS藉由辨識tRNAAla acceptor stem上的G3:U70鹼基配對來維持其tRNAAla辨識的專一性,這種辨認方式存在幾乎所有物種中。AlaRS的結構含有四個功能區域(包含催化、tRNA辨識、校正、及C-Ala),而且在演化上一直保持這四個功能區域,因此不論是原核或真核生物的AlaRS都是由四個功能區域組成。然而,不同於胺基端的其他三個功能區域,他們在序列及功能上都非常保守,C端區域 (C-Ala)在序列和功能上有著顯著差異。例如,大腸桿菌C-Ala參與了tRNA結合,並參與AlaRS二聚體的形成,但人類細胞質C-Ala卻不參與tRNA結合,而且人類AlaRS是以單體的形式存在。更有趣的是,人類C-Ala雖然失去結合tRNA的能力,卻獲得DNA結合能力。在本論文中,我們發現線蟲C. elegans細胞質C-Ala同時具有tRNA和DNA的結合能力,而且此 C-Ala 能夠結合許多不同種類的tRNA,但是明顯地偏好tRNAAla。我們進一步的實驗發現線蟲C-Ala 可以專一性地辨識tRNAAla D-loop上的G18。值得注意的是:這二個鹼基在演化上非常保守,且參與了tRNA L構型的形成,因此這二個鹼基也廣泛存在非tRNAAla的D-loop上。雖然線蟲粒線體AlaRS的C-Ala比其細胞質AlaRS的C-Ala 短小許多(大約只有四分之一大小),卻也可以同時與DNA及其同源tRNAAla D-loop結合。這項研究解釋了C-Ala如何透過與tRNAAla的D-loop結合,促進 AlaRS 的tRNAAla結合能力及胺醯化活性。
摘要(英) Alanyl-tRNA synthetase (AlaRS) is the enzyme responsible for charging alanine to its cognate tRNAAla. AlaRS is prominent for its ability to specifically recognize tRNAAla through a wobble base pair in the acceptor stem, G3:U70, which is highly conserved in nearly all organisms. AlaRS retains a highly-conserved four-domain structure. Nevertheless, its C-terminal domain (C-Ala) is significantly diverged in sequence and function. For example, E. coli C-Ala mediates tRNA binding and dimerization, while human cytoplasmic C-Ala poorly binds tRNA and forms a monomer. Instead, human C-Ala retains a strong DNA-binding activity. We showed herein that the nematode C. elegans cytoplasmic C-Ala robustly binds both tRNA and DNA. Despite the fact that this C-Ala can bind many different tRNAs with appreciable affinities, with a distinct preference to tRNAAla. As it turns out, Ce-C-Alac specifically recognized the conserved invariant base G18 in the D-loop of tRNAAla through a highly conserved lysine residue, K934. While its mitochondrial counterpart is only one fourth the size of a regular C-Ala domain, it can also bind DNA and its cognate tRNAAla. This study underscores the molecular mechanism of how C-Ala targets AlaRS to the elbow-containing tRNAAla and facilitates its aminoacylation.
關鍵字(中) ★ 丙氨酰-tRNA 合成酶
★ tRNA
★ C-Ala
★ 秀麗隱桿線蟲
★ tRNA 結合區域
★ DNA 結合區域
關鍵字(英) ★ Alanyl-tRNA synthetase
★ tRNA
★ C-Ala
★ C. elegans
★ tRNA-binding domain
★ DNA-binding domain
論文目次 Chinese Abstract v
English Abstract vi
Acknowledgment vii
List of Publications ix
Table of Contents x
List of Figures xiv
List of Tables xv
Abbreviations xvi
Section I: Caenorhabditis elegans C-Ala 1
Chapter I. Introduction 1
1-1. Aminoacyl-tRNAsynthetases are essential in protein synthesis 1
1-2. Alanyl-tRNA synthetase (AlaRS) preserves a conserved four-domain structure 2
1-3. AlaRS recognizes tRNAAla through a G:U base pair 3
1-4. C-Ala possesses diverse functions throughout evolution 6
1-5. Research aims 7
Chapter II. Materials and Methods 9
2-1. Construction of plasmids 9
2-2. Western blotting 10
2-3. Complementation assay 11
2-4. Purification of His6-tagged proteins 12
2-5. In vitro transcription of tRNAAla, biloopAla, and minihelixAla 13
2-6. Aminoacylation assay 14
2-7. Kinetic assay 15
2-8. Electrophoretic mobility shift assay (EMSA) 16
Chapter III. Results 17
3-1. The nematode C. elegans possesses a canonical and a noncanonical AlaRS 17
3-2. Deletion of C-Ala impairs the aminoacylation activity of CeAlaRSc 20
3-3. Fusion of C-Ala to CeAlaRSm selectively enhances its aminoacylation activity toward the L-shaped tRNAAla 23
3-4. C. elegans C-Ala is both a DNA- and a tRNA-binding domain 26
3-5. Lack of an intact C-Ala domain in CeAlaRSm resulted from secondary loss of this domain 29
3-6. C. elegans cytoplasmic and mitochondrial C-Ala domains share little similarity 32
3-7. The N and C subdomains of Ce-C-Alac are responsible for DNA and tRNA binding, respectively 35
3-8. Ce-C-Alac specifically targets the D-loop sequence of CetRNAnAla 36
3-9. Ce-C-Alam also plays an important role in tRNA binding and aminoacylation 44
Chapter IV. Discussion 49
4-1. The amino acid residues liable for G3:U70 recognition are diverged in CeAlaRSm 49
4-2. Distinct features of the prokaryotic and eukaryotic C-Ala domains 50
4-3. The nematode C-Ala is both a tRNA- and a DNA-binding domain 51
4-4. C-Ala plays an important role in tRNA binding and aminoacylation 52
4-5. The D-loop sequence of tRNAAla is recognized by C-Ala 53
4-6. Acquisition (or loss) of C-Ala is an adaptive mechanism to fit the structure of its cognate tRNA 55
4-7. C-Ala of AlaRS is coevolved with the D-loop of tRNAAla 55
Chapter V. Conclusions 57
Section II: Tupanvirus AlaRS 58
Chapter I. Introduction 58
Chapter II. Materials and Methods 60
2-1. Construction of plasmids 60
2-2. Electrophoretic mobility shift assay (EMSA) 60
2-3. Complementation assay on FOA 61
2-4. In vitro transcription of tRNAAla and microAla 61
2-5. Aminoacylation assay 62
Chapter III. Results 64
3-1. TuAlaRS harbors only the aminoacylation domain 64
3-2. TuAlaRS charges tRNAAla and microAla efficiently and specifically 66
3-3. TuAlaRS binds both tRNAAla and microAla robustly 70
3-4. TuAlaRS fails to charge C. elegans mitochondrial microAla 73
3-5. Kinetic parameters for aminoacylation of tRNAAla and microAla by TuAlaRS 73
3-6. P321 and T416 are dispensable for aminoacylation 74
3-7. TuAlaRS can functionally rescue a yeast ALA1 knockout (KO) strain 75
3-8. Phylogenetic relationship of TuAlaRS with other AlaRSs 76
Chapter IV. Discussion 79
4-1. TuAlaRS displays a G3:U70 specificity 79
4-2. Despite lacking C-Ala, TuAlaRS binds tRNAAla robustly 81
4-3. TuAlaRS may have lost its editing and C-Ala domains later during evolution 82
Chapter V. Conclusions 83
Section III: Human tRNAHis-guanylyltransferase 84
Chapter I. Introduction 84
1-1. Two distinct pathways for acquisition of G-1 to tRNAHis 84
1-2. tRNAHis recognition by Thg1 84
1-3. Mechanisms of G-1 addition in eukaryotes and archaea 85
1-4. Each Thg1 subunit possesses two nucleotide-binding pockets 86
1-5. A dual-functional human Thg1 86
Chapter II. Materials and Methods 88
2-1. Gene cloning and protein purification 88
2-2. Primer extension analysis 88
2-3. In vitro transcription of tRNAHis 89
2-4. Aminoacylation assay 90
2-5. GTP incorporation assay 90
2-6. GTPase assay 91
2-7. Complementation assay 91
Chapter III. Results 93
3-1. Mature human mitochondrial tRNAHis contains G-1 93
3-2. ATP/GTP ratios affects GTP incorporation into tRNAmHis by human Thg1 95
3-3. Human Thg1 displays tRNA-inducible GTPase activity 96
3-4. ATP inhibits the GTPase activity of human Thg1 98
3-5. GTPase activity exists in other high-eukaryotic Thg1 enzymes 101
Chapter IV. Discussion 103
4-1. ATP/GTP ratios regulate the number of GTPs incorporated into HstRNAmHis 103
4-2. Human Thg1 displays a tRNA-inducible GTPase activity 103
4-3. Human Thg1’s GTPase activity resides in the adenylylation site 104
4-4. tRNA-inducible GTPase activity exists in high-eukaryotic Thg1 enzymes 107
Chapter V. Conclusions 108
References 109
Supplementary figures
Appendix A: Primer list
Appendix B: Plasmid list
參考文獻 1. Woese, C.R., Olsen, G.J., Ibba, M. and Söll, D. (2000) Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev, 64, 202-236.
2. Yadavalli, S.S. and Ibba, M. (2012) Quality control in aminoacyl-tRNA synthesis its role in translational fidelity. Adv Protein Chem Struct Biol, 86, 1-43.
3. Rubio Gomez, M.A. and Ibba, M. (2020) Aminoacyl-tRNA synthetases. Rna, 26, 910-936.
4. Yadavalli, S.S. and Ibba, M. (2012) In Marintchev, A. (ed.), Advances in Protein Chemistry and Structural Biology. Academic Press, Vol. 86, pp. 1-43.
5. Carter, C.W., Jr. (1993) Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu Rev Biochem, 62, 715-748.
6. O′Donoghue, P. and Luthey-Schulten, Z. (2003) On the evolution of structure in aminoacyl-tRNA synthetases. Microbiol Mol Biol Rev, 67, 550-573.
7. Burbaum, J.J. and Schimmel, P. (1991) Structural relationships and the classification of aminoacyl-tRNA synthetases. J Biol Chem, 266, 16965-16968.
8. Chang, C.P., Tseng, Y.K., Ko, C.Y. and Wang, C.C. (2012) Alanyl-tRNA synthetase genes of Vanderwaltozyma polyspora arose from duplication of a dual-functional predecessor of mitochondrial origin. Nucleic Acids Res, 40, 314-322.
9. Kuhle, B., Chihade, J. and Schimmel, P. (2020) Relaxed sequence constraints favor mutational freedom in idiosyncratic metazoan mitochondrial tRNAs. Nat Commun, 11, 969.
10. Chihade, J.W., Hayashibara, K., Shiba, K. and Schimmel, P. (1998) Strong selective pressure to use G:U to mark an RNA acceptor stem for alanine. Biochemistry, 37, 9193-9202.
11. Natsoulis, G., Hilger, F. and Fink, G.R. (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell, 46, 235-243.
12. Lee, Y.H., Lo, Y.T., Chang, C.P., Yeh, C.S., Chang, T.H., Chen, Y.W., Tseng, Y.K. and Wang, C.C. (2019) Naturally occurring dual recognition of tRNA(His) substrates with and without a universal identity element. RNA Biol, 16, 1275-1285.
13. Guo, M., Yang, X.L. and Schimmel, P. (2010) New functions of aminoacyl-tRNA synthetases beyond translation. Nat Rev Mol Cell Biol, 11, 668-674.
14. Naganuma, M., Sekine, S., Fukunaga, R. and Yokoyama, S. (2009) Unique protein architecture of alanyl-tRNA synthetase for aminoacylation, editing, and dimerization. Proc Natl Acad Sci U S A, 106, 8489-8494.
15. Beebe, K., Mock, M., Merriman, E. and Schimmel, P. (2008) Distinct domains of tRNA synthetase recognize the same base pair. Nature, 451, 90-93.
16. Guo, M., Chong, Y.E., Beebe, K., Shapiro, R., Yang, X.L. and Schimmel, P. (2009) The C-Ala domain brings together editing and aminoacylation functions on one tRNA. Science, 325, 744-747.
17. Sun, L., Song, Y., Blocquel, D., Yang, X.L. and Schimmel, P. (2016) Two crystal structures reveal design for repurposing the C-Ala domain of human AlaRS. Proc Natl Acad Sci U S A, 113, 14300-14305.
18. Asahara, H., Himeno, H., Tamura, K., Hasegawa, T., Watanabe, K. and Shimizu, M. (1993) Recognition nucleotides of Escherichia coli tRNA(Leu) and its elements facilitating discrimination from tRNASer and tRNA(Tyr). J Mol Biol, 231, 219-229.
19. Dock-Bregeon, A.C., Garcia, A., Giegé, R. and Moras, D. (1990) The contacts of yeast tRNA(Ser) with seryl-tRNA synthetase studied by footprinting experiments. Eur J Biochem, 188, 283-290.
20. Ontiveros, R.J., Stoute, J. and Liu, K.F. (2019) The chemical diversity of RNA modifications. Biochem J, 476, 1227-1245.
21. Francklyn, C. and Schimmel, P. (1989) Aminoacylation of RNA minihelices with alanine. Nature, 337, 478-481.
22. Shi, J.P., Martinis, S.A. and Schimmel, P. (1992) RNA tetraloops as minimalist substrates for aminoacylation. Biochemistry, 31, 4931-4936.
23. Musier-Forsyth, K., Usman, N., Scaringe, S., Doudna, J., Green, R. and Schimmel, P. (1991) Specificity for aminoacylation of an RNA helix: an unpaired, exocyclic amino group in the minor groove. Science, 253, 784-786.
24. Hou, Y.M. and Schimmel, P. (1988) A simple structural feature is a major determinant of the identity of a transfer RNA. Nature, 333, 140-145.
25. McClain, W.H. and Foss, K. (1988) Changing the identity of a tRNA by introducing a G-U wobble pair near the 3′ acceptor end. Science, 240, 793-796.
26. Hou, Y.M. and Schimmel, P. (1989) Evidence that a major determinant for the identity of a transfer RNA is conserved in evolution. Biochemistry, 28, 6800-6804.
27. Giegé, R. (2008) Toward a more complete view of tRNA biology. Nat Struct Mol Biol, 15, 1007-1014.
28. Naganuma, M., Sekine, S., Chong, Y.E., Guo, M., Yang, X.L., Gamper, H., Hou, Y.M., Schimmel, P. and Yokoyama, S. (2014) The selective tRNA aminoacylation mechanism based on a single G•U pair. Nature, 510, 507-511.
29. Sun, L., Gomes, A.C., He, W., Zhou, H., Wang, X., Pan, D.W., Schimmel, P., Pan, T. and Yang, X.-L. (2016) Evolutionary Gain of Alanine Mischarging to Noncognate tRNAs with a G4:U69 Base Pair. Journal of the American Chemical Society, 138, 12948-12955.
30. Chong, Y.E., Guo, M., Yang, X.L., Kuhle, B., Naganuma, M., Sekine, S.I., Yokoyama, S. and Schimmel, P. (2018) Distinct ways of G:U recognition by conserved tRNA binding motifs. Proc Natl Acad Sci U S A, 115, 7527-7532.
31. Fukunaga, R. and Yokoyama, S. (2007) Crystallization and preliminary X-ray crystallographic study of alanyl-tRNA synthetase from the archaeon Archaeoglobus fulgidus. Acta Crystallogr Sect F Struct Biol Cryst Commun, 63, 224-228.
32. Antika, T.R., Chrestella, D.J., Ivanesthi, I.R., Rida, G.R.N., Chen, K.Y., Liu, F.G., Lee, Y.C., Chen, Y.W., Tseng, Y.K. and Wang, C.C. (2022) Gain of C-Ala enables AlaRS to target the L-shaped tRNAAla. Nucleic Acids Res, 50, 2190-2200.
33. Chang, C.P., Lin, G., Chen, S.J., Chiu, W.C., Chen, W.H. and Wang, C.C. (2008) Promoting the formation of an active synthetase/tRNA complex by a nonspecific tRNA-binding domain. J Biol Chem, 283, 30699-30706.
34. Chang, K.J. and Wang, C.C. (2004) Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J Biol Chem, 279, 13778-13785.
35. Tang, H.L., Yeh, L.S., Chen, N.K., Ripmaster, T., Schimmel, P. and Wang, C.C. (2004) Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. J Biol Chem, 279, 49656-49663.
36. Fersht, A.R., Ashford, J.S., Bruton, C.J., Jakes, R., Koch, G.L. and Hartley, B.S. (1975) Active site titration and aminoacyl adenylate binding stoichiometry of aminoacyl-tRNA synthetases. Biochemistry, 14, 1-4.
37. Levi, O. and Arava, Y. (2019) mRNA association by aminoacyl tRNA synthetase occurs at a putative anticodon mimic and autoregulates translation in response to tRNA levels. PLoS Biol, 17, e3000274.
38. Huang, H.Y., Kuei, Y., Chao, H.Y., Chen, S.J., Yeh, L.S. and Wang, C.C. (2006) Cross-species and cross-compartmental aminoacylation of isoaccepting tRNAs by a class II tRNA synthetase. J Biol Chem, 281, 31430-31439.
39. Zhang, H., Wu, J., Lyu, Z. and Ling, J. (2021) Impact of alanyl-tRNA synthetase editing deficiency in yeast. Nucleic Acids Res, 49, 9953-9964.
40. Jones, D.T., Taylor, W.R. and Thornton, J.M. (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci, 8, 275-282.
41. Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol, 35, 1547-1549.
42. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A. et al. (2021) Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583-589.
43. Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A. et al. (2021) AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50, D439-D444.
44. Reynolds, C.R., Islam, S.A. and Sternberg, M.J.E. (2018) EzMol: A Web Server Wizard for the Rapid Visualization and Image Production of Protein and Nucleic Acid Structures. J Mol Biol, 430, 2244-2248.
45. Gregoire, C.J., Gautheret, D. and Loret, E.P. (1997) No tRNA3Lys unwinding in a complex with HIV NCp7. J Biol Chem, 272, 25143-25148.
46. Barends, S., Björk, K., Gultyaev, A.P., de Smit, M.H., Pleij, C.W. and Kraal, B. (2002) Functional evidence for D- and T-loop interactions in tmRNA. FEBS Lett, 514, 78-83.
47. Li, H., Zhu, D., Wu, J., Ma, Y., Cai, C., Chen, Y., Qin, M. and Dai, H. (2021) New substrates and determinants for tRNA recognition of RNA methyltransferase DNMT2/TRDMT1. RNA Biol, 18, 2531-2545.
48. Honorato, R.V., Koukos, P.I., Jiménez-García, B., Tsaregorodtsev, A., Verlato, M., Giachetti, A., Rosato, A. and Bonvin, A. (2021) Structural Biology in the Clouds: The WeNMR-EOSC Ecosystem. Front Mol Biosci, 8, 729513.
49. van Zundert, G.C.P., Rodrigues, J., Trellet, M., Schmitz, C., Kastritis, P.L., Karaca, E., Melquiond, A.S.J., van Dijk, M., de Vries, S.J. and Bonvin, A. (2016) The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. J Mol Biol, 428, 720-725.
50. Lorenz, C., Lünse, C.E. and Mörl, M. (2017) tRNA Modifications: Impact on Structure and Thermal Adaptation. Biomolecules, 7.
51. Putney, S.D. and Schimmel, P. (1981) An aminoacyl tRNA synthetase binds to a specific DNA sequence and regulates its gene transcription. Nature, 291, 632-635.
52. Lo, W.S., Gardiner, E., Xu, Z., Lau, C.F., Wang, F., Zhou, J.J., Mendlein, J.D., Nangle, L.A., Chiang, K.P., Yang, X.L. et al. (2014) Human tRNA synthetase catalytic nulls with diverse functions. Science, 345, 328-332.
53. Palencia, A., Crépin, T., Vu, M.T., Lincecum, T.L., Jr., Martinis, S.A. and Cusack, S. (2012) Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase. Nat Struct Mol Biol, 19, 677-684.
54. Shimada, A., Nureki, O., Goto, M., Takahashi, S. and Yokoyama, S. (2001) Structural and mutational studies of the recognition of the arginine tRNA-specific major identity element, A20, by arginyl-tRNA synthetase. Proc Natl Acad Sci U S A, 98, 13537-13542.
55. Morales, A.J., Swairjo, M.A. and Schimmel, P. (1999) Structure-specific tRNA-binding protein from the extreme thermophile Aquifex aeolicus. Embo j, 18, 3475-3483.
56. Simos, G., Segref, A., Fasiolo, F., Hellmuth, K., Shevchenko, A., Mann, M. and Hurt, E.C. (1996) The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. Embo j, 15, 5437-5448.
57. Teramoto, T., Kaitany, K.J., Kakuta, Y., Kimura, M., Fierke, C.A. and Hall, Traci M T. (2020) Pentatricopeptide repeats of protein-only RNase P use a distinct mode to recognize conserved bases and structural elements of pre-tRNA. Nucleic Acids Research, 48, 11815-11826.
58. Zhang, J. and Ferré-D′Amaré, A.R. (2016) The tRNA Elbow in Structure, Recognition and Evolution. Life (Basel), 6.
59. Jasin, M., Regan, L. and Schimmel, P. (1983) Modular arrangement of functional domains along the sequence of an aminoacyl tRNA synthetase. Nature, 306, 441-447.
60. Arutaki, M., Kurihara, R., Matsuoka, T., Inami, A., Tokunaga, K., Ohno, T., Takahashi, H., Takano, H., Ando, T., Mutsuro-Aoki, H. et al. (2020) G:U-Independent RNA Minihelix Aminoacylation by Nanoarchaeum equitans Alanyl-tRNA Synthetase: An Insight into the Evolution of Aminoacyl-tRNA Synthetases. J Mol Evol, 88, 501-509.
61. Claverie, J.M. and Abergel, C. (2018) Mimiviridae: An Expanding Family of Highly Diverse Large dsDNA Viruses Infecting a Wide Phylogenetic Range of Aquatic Eukaryotes. Viruses, 10.
62. Abrahao, J., Silva, L., Silva, L.S., Khalil, J.Y.B., Rodrigues, R., Arantes, T., Assis, F., Boratto, P., Andrade, M., Kroon, E.G. et al. (2018) Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nat Commun, 9, 749.
63. Oliveira, G., La Scola, B. and Abrahao, J. (2019) Giant virus vs amoeba: fight for supremacy. Virol J, 16, 126.
64. Ryder, S.P., Recht, M.I. and Williamson, J.R. (2008) Quantitative analysis of protein-RNA interactions by gel mobility shift. Methods Mol Biol, 488, 99-115.
65. Francklyn, C. and Schimmel, P. (1989) Aminoacylation of RNA minihelices with alanine. Nature, 337, 478-481.
66. Le, S.Q. and Gascuel, O. (2008) An improved general amino acid replacement matrix. Mol Biol Evol, 25, 1307-1320.
67. Tamura, K., Stecher, G. and Kumar, S. (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol, 38, 3022-3027.
68. Lovato, M.A., Chihade, J.W. and Schimmel, P. (2001) Translocation within the acceptor helix of a major tRNA identity determinant. Embo j, 20, 4846-4853.
69. Wakasugi, K., Quinn, C.L., Tao, N. and Schimmel, P. (1998) Genetic code in evolution: switching species-specific aminoacylation with a peptide transplant. The EMBO Journal, 17, 297-305.
70. Beuning, P.J., Gulotta, M. and Musier-Forsyth, K. (1997) Atomic Group “Mutagenesis” Reveals Major Groove Fine Interactions of a tRNA Synthetase with an RNA Helix. Journal of the American Chemical Society, 119, 8397-8402.
71. Davis, M.W., Buechter, D.D. and Schimmel, P.R. (1994) Functional dissection of a predicted class-defining motif in a class II tRNA synthetase of unknown structure. Biochemistry, 33 33, 9904-9911.
72. Swairjo, M.A., Otero, F.J., Yang, X.L., Lovato, M.A., Skene, R.J., McRee, D.E., Ribas de Pouplana, L. and Schimmel, P. (2004) Alanyl-tRNA synthetase crystal structure and design for acceptor-stem recognition. Mol Cell, 13, 829-841.
73. Miller, W.T., Hou, Y.M. and Schimmel, P. (1991) Mutant aminoacyl-tRNA synthetase that compensates for a mutation in the major identity determinant of its tRNA. Biochemistry, 30, 2635-2641.
74. Brandes, N. and Linial, M. (2019) Giant Viruses-Big Surprises. Viruses, 11.
75. Abergel, C., Rudinger-Thirion, J., Giege, R. and Claverie, J.M. (2007) Virus-encoded aminoacyl-tRNA synthetases: structural and functional characterization of mimivirus TyrRS and MetRS. J Virol, 81, 12406-12417.
76. Yamada, T., Onimatsu, H. and Van Etten, J.L. (2006) Chlorella viruses. Adv Virus Res, 66, 293-336.
77. Schimmel, P., Giegé, R., Moras, D. and Yokoyama, S. (1993) An operational RNA code for amino acids and possible relationship to genetic code. Proc Natl Acad Sci U S A, 90, 8763-8768.
78. Hopper, A.K. and Phizicky, E.M. (2003) tRNA transfers to the limelight. Genes Dev, 17, 162-180.
79. Kufel, J. and Tollervey, D. (2003) 3′-processing of yeast tRNATrp precedes 5′-processing. Rna, 9, 202-208.
80. Orellana, O., Cooley, L. and Soll, D. (1986) The additional guanylate at the 5′ terminus of Escherichia coli tRNAHis is the result of unusual processing by RNase P. Mol Cell Biol, 6, 525-529.
81. Wang, C., Sobral, B.W. and Williams, K.P. (2007) Loss of a universal tRNA feature. J Bacteriol, 189, 1954-1962.
82. Gu, W., Jackman, J.E., Lohan, A.J., Gray, M.W. and Phizicky, E.M. (2003) tRNAHis maturation: an essential yeast protein catalyzes addition of a guanine nucleotide to the 5′ end of tRNAHis. Genes Dev, 17, 2889-2901.
83. Rosen, A.E. and Musier-Forsyth, K. (2004) Recognition of G-1:C73 atomic groups by Escherichia coli histidyl-tRNA synthetase. J Am Chem Soc, 126, 64-65.
84. Connolly, S.A., Rosen, A.E., Musier-Forsyth, K. and Francklyn, C.S. (2004) G-1:C73 recognition by an arginine cluster in the active site of Escherichia coli histidyl-tRNA synthetase. Biochemistry, 43, 962-969.
85. Rudinger, J., Florentz, C. and Giegé, R. (1994) Histidylation by yeast HisRS of tRNA or tRNA-like structure relies on residues -1 and 73 but is dependent on the RNA context. Nucleic Acids Res, 22, 5031-5037.
86. Himeno, H., Hasegawa, T., Ueda, T., Watanabe, K., Miura, K. and Shimizu, M. (1989) Role of the extra G-C pair at the end of the acceptor stem of tRNA(His) in aminoacylation. Nucleic Acids Res, 17, 7855-7863.
87. Preston, M.A. and Phizicky, E.M. (2010) The requirement for the highly conserved G-1 residue of Saccharomyces cerevisiae tRNAHis can be circumvented by overexpression of tRNAHis and its synthetase. Rna, 16, 1068-1077.
88. Gu, W., Hurto, R.L., Hopper, A.K., Grayhack, E.J. and Phizicky, E.M. (2005) Depletion of Saccharomyces cerevisiae tRNA(His) guanylyltransferase Thg1p leads to uncharged tRNAHis with additional m(5)C. Mol Cell Biol, 25, 8191-8201.
89. Heinemann, I.U., O′Donoghue, P., Madinger, C., Benner, J., Randau, L., Noren, C.J. and Söll, D. (2009) The appearance of pyrrolysine in tRNAHis guanylyltransferase by neutral evolution. Proc Natl Acad Sci U S A, 106, 21103-21108.
90. Heinemann, I.U., Nakamura, A., O′Donoghue, P., Eiler, D. and Söll, D. (2012) tRNAHis-guanylyltransferase establishes tRNAHis identity. Nucleic Acids Res, 40, 333-344.
91. Unseld, M., Marienfeld, J.R., Brandt, P. and Brennicke, A. (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet, 15, 57-61.
92. Maréchal-Drouard, L., Kumar, R., Remacle, C. and Small, I. (1996) RNA editing of larch mitochondrial tRNA(His) precursors is a prerequisite for processing. Nucleic Acids Res, 24, 3229-3234.
93. Oda, K., Yamato, K., Ohta, E., Nakamura, Y., Takemura, M., Nozato, N., Akashi, K. and Ohyama, K. (1992) Transfer RNA genes in the mitochondrial genome from a liverwort, Marchantia polymorpha: the absence of chloroplast-like tRNAs. Nucleic Acids Res, 20, 3773-3777.
94. Jackman, J.E. and Phizicky, E.M. (2006) tRNAHis guanylyltransferase catalyzes a 3′-5′ polymerization reaction that is distinct from G-1 addition. Proc Natl Acad Sci U S A, 103, 8640-8645.
95. Abad, M.G., Rao, B.S. and Jackman, J.E. (2010) Template-dependent 3′-5′ nucleotide addition is a shared feature of tRNAHis guanylyltransferase enzymes from multiple domains of life. Proc Natl Acad Sci U S A, 107, 674-679.
96. Abad, M.G., Long, Y., Willcox, A., Gott, J.M., Gray, M.W. and Jackman, J.E. (2011) A role for tRNA(His) guanylyltransferase (Thg1)-like proteins from Dictyostelium discoideum in mitochondrial 5′-tRNA editing. Rna, 17, 613-623.
97. Heinemann, I.U., Randau, L., Tomko, R.J., Jr. and Söll, D. (2010) 3′-5′ tRNAHis guanylyltransferase in bacteria. FEBS Lett, 584, 3567-3572.
98. Hyde, S.J., Eckenroth, B.E., Smith, B.A., Eberley, W.A., Heintz, N.H., Jackman, J.E. and Doublié, S. (2010) tRNA(His) guanylyltransferase (THG1), a unique 3′-5′ nucleotidyl transferase, shares unexpected structural homology with canonical 5′-3′ DNA polymerases. Proc Natl Acad Sci U S A, 107, 20305-20310.
99. Rao, B.S., Maris, E.L. and Jackman, J.E. (2011) tRNA 5′-end repair activities of tRNAHis guanylyltransferase (Thg1)-like proteins from Bacteria and Archaea. Nucleic Acids Res, 39, 1833-1842.
100. Nakamura, A., Nemoto, T., Heinemann, I.U., Yamashita, K., Sonoda, T., Komoda, K., Tanaka, I., Söll, D. and Yao, M. (2013) Structural basis of reverse nucleotide polymerization. Proc Natl Acad Sci U S A, 110, 20970-20975.
101. Doublié, S., Tabor, S., Long, A.M., Richardson, C.C. and Ellenberger, T. (1998) Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature, 391, 251-258.
102. Nakamura, A., Wang, D. and Komatsu, Y. (2018) Biochemical analysis of human tRNAHis guanylyltransferase in mitochondrial tRNAHis maturation. Biochem Biophys Res Commun, 503, 2015-2021.
103. Schmeing, T.M., Huang, K.S., Strobel, S.A. and Steitz, T.A. (2005) An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature, 438, 520-524.
104. Jackman, J.E., Montange, R.K., Malik, H.S. and Phizicky, E.M. (2003) Identification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9. Rna, 9, 574-585.
105. Lee, Y.H., Chang, C.P., Cheng, Y.J., Kuo, Y.Y., Lin, Y.S. and Wang, C.C. (2017) Evolutionary gain of highly divergent tRNA specificities by two isoforms of human histidyl-tRNA synthetase. Cell Mol Life Sci, 74, 2663-2677.
106. Choudhury, S.R., Westfall, C.S., Hackenberg, D. and Pandey, S. (2013) Measurement of GTP-binding and GTPase activity of heterotrimeric Gα proteins. Methods Mol Biol, 1043, 13-20.
107. Hames, B.D. and Rickwood, D. (1981) Gel electrophoresis of proteins : a practical approach / edited by B.D. Hames, D. Rickwood. IRL Press, London.
108. Lee, Y.-H., Lo, Y.-T., Chang, C.-P., Yeh, C.-S., Chang, T.-H., Chen, Y.-W., Tseng, Y.-K. and Wang, C.-C. (2019) Naturally occurring dual recognition of tRNAHis substrates with and without a universal identity element. RNA Biology, 16, 1275-1285.
109. Bourgeois, G., Marcoux, J., Saliou, J.-M., Cianférani, S. and Graille, M. (2017) Activation mode of the eukaryotic m2G10 tRNA methyltransferase Trm11 by its partner protein Trm112. Nucleic Acids Research, 45, 1971 - 1982.
110. Urbonavicius, J., Armengaud, J. and Grosjean, H. (2006) Identity elements required for enzymatic formation of N2,N2-dimethylguanosine from N2-monomethylated derivative and its possible role in avoiding alternative conformations in archaeal tRNA. J Mol Biol, 357, 387-399.
111. Hickey, F.B., Corcoran, J.B., Griffin, B., Bhreathnach, U., Mortiboys, H., Reid, H.M., Andrews, D., Byrne, S., Furlong, F., Martin, F. et al. (2014) IHG-1 increases mitochondrial fusion and bioenergetic function. Diabetes, 63, 4314-4325.
112. Nakamura, A., Wang, D. and Komatsu, Y. (2018) Biochemical analysis of human tRNA(His) guanylyltransferase in mitochondrial tRNA(His) maturation. Biochem Biophys Res Commun, 503, 2015-2021.
113. Nakamura, A., Wang, D. and Komatsu, Y. (2021) Analysis of GTP addition in the reverse (3′-5′) direction by human tRNA(His) guanylyltransferase. Rna, 27, 665-675.
114. Traut, T.W. (1994) Physiological concentrations of purines and pyrimidines. Molecular and Cellular Biochemistry, 140, 1-22.
115. Zala, D., Schlattner, U., Desvignes, T., Bobe, J., Roux, A., Chavrier, P. and Boissan, M. (2017) The advantage of channeling nucleotides for very processive functions. F1000Res, 6, 724.
116. Wittinghofer, A. and Vetter, I.R. (2011) Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem, 80, 943-971.
117. Liu, C.C. and Alberts, B.M. (1981) Characterization of the DNA-dependent GTPase activity of T4 gene 41 protein, an essential component of the T4 bacteriophage DNA replication apparatus. J Biol Chem, 256, 2813-2820.
118. Manikas, R.G., Thomson, E., Thoms, M. and Hurt, E. (2016) The K⁺-dependent GTPase Nug1 is implicated in the association of the helicase Dbp10 to the immature peptidyl transferase centre during ribosome maturation. Nucleic Acids Res, 44, 1800-1812.
119. Kimura, T., Takagi, K., Hirata, Y., Hase, Y., Muto, A. and Himeno, H. (2008) Ribosome-small-subunit-dependent GTPase interacts with tRNA-binding sites on the ribosome. J Mol Biol, 381, 467-477.
120. Li, Y.J., Cao, Y.L., Feng, J.X., Qi, Y., Meng, S., Yang, J.F., Zhong, Y.T., Kang, S., Chen, X., Lan, L. et al. (2019) Structural insights of human mitofusin-2 into mitochondrial fusion and CMT2A onset. Nat Commun, 10, 4914.
指導教授 王健家(Wang Chien-Chia) 審核日期 2023-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明