中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/26901
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78937/78937 (100%)
Visitors : 39836783      Online Users : 634
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/26901


    Title: Thermal stress analysis of planar solid oxide fuel cell stacks: Effects of sealing design
    Authors: Lin,CK;Huang,LH;Chiang,LK;Chyou,YP
    Contributors: 機械工程研究所
    Keywords: COMPRESSIVE SEALS;RESIDUAL-STRESSES;SOFC STACK;TOOL
    Date: 2009
    Issue Date: 2010-06-29 18:02:50 (UTC+8)
    Publisher: 中央大學
    Abstract: A three-dimensional multi-cell model based on a prototypical, planar solid oxide fuel cell (pSOFC) stack design using compliant mica-based seal gaskets was constructed in this study to perform comprehensive thermal stress analyses by using a commercial finite element analysis (FEA) code. Effects of the applied assembly load on the thermal stress distribution in the given integrated pSOFC stack with such a compressive sealing design were characterized. A comparison was made with a previous study for a similar comprehensive multi-cell pSOFC stack model but using only a rigid type of glass-ceramic sealant instead. Simulation results indicate that stress distributions in the components such as positive electrode-electrolyte-negative electrode (PEN) plate, PEN-supporting window frame, nickel mesh, and interconnect were mainly governed by the thermal expansion mismatch rather than by the applied compressive load. An applied compressive load of 0.6 MPa could eliminate the bending deformation in the PEN-frame assembly plate leading to a well joined structure. For a greater applied load, the critical stresses in the glass-ceramic and mica sealants were increased to a potential failure level. In this regard, a 0.6 MPa compressive load was considered an optimal assembly load. Changing the seal between the connecting metallic PEN-supporting frame and interconnect from a rigid type of glass-ceramic sealant to a compressive type of mica gasket would significantly influence the thermal stress distribution in the PEN plate. The critical stress in the PEN was favorably decreased at room temperature but considerably increased at operating temperature due to such a change in sealing design. Such differences in the stress distribution could be ascribed to the differences in the constrained conditions at the interfaces of adjacent components under various sealing designs. (C) 2009 Elsevier B.V. All rights reserved.
    Relation: JOURNAL OF POWER SOURCES
    Appears in Collections:[Graduate Institute of Mechanical Engineering] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML498View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明