中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/26901
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 78937/78937 (100%)
造访人次 : 39837393      在线人数 : 1153
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/26901


    题名: Thermal stress analysis of planar solid oxide fuel cell stacks: Effects of sealing design
    作者: Lin,CK;Huang,LH;Chiang,LK;Chyou,YP
    贡献者: 機械工程研究所
    关键词: COMPRESSIVE SEALS;RESIDUAL-STRESSES;SOFC STACK;TOOL
    日期: 2009
    上传时间: 2010-06-29 18:02:50 (UTC+8)
    出版者: 中央大學
    摘要: A three-dimensional multi-cell model based on a prototypical, planar solid oxide fuel cell (pSOFC) stack design using compliant mica-based seal gaskets was constructed in this study to perform comprehensive thermal stress analyses by using a commercial finite element analysis (FEA) code. Effects of the applied assembly load on the thermal stress distribution in the given integrated pSOFC stack with such a compressive sealing design were characterized. A comparison was made with a previous study for a similar comprehensive multi-cell pSOFC stack model but using only a rigid type of glass-ceramic sealant instead. Simulation results indicate that stress distributions in the components such as positive electrode-electrolyte-negative electrode (PEN) plate, PEN-supporting window frame, nickel mesh, and interconnect were mainly governed by the thermal expansion mismatch rather than by the applied compressive load. An applied compressive load of 0.6 MPa could eliminate the bending deformation in the PEN-frame assembly plate leading to a well joined structure. For a greater applied load, the critical stresses in the glass-ceramic and mica sealants were increased to a potential failure level. In this regard, a 0.6 MPa compressive load was considered an optimal assembly load. Changing the seal between the connecting metallic PEN-supporting frame and interconnect from a rigid type of glass-ceramic sealant to a compressive type of mica gasket would significantly influence the thermal stress distribution in the PEN plate. The critical stress in the PEN was favorably decreased at room temperature but considerably increased at operating temperature due to such a change in sealing design. Such differences in the stress distribution could be ascribed to the differences in the constrained conditions at the interfaces of adjacent components under various sealing designs. (C) 2009 Elsevier B.V. All rights reserved.
    關聯: JOURNAL OF POWER SOURCES
    显示于类别:[機械工程研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML498检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明