中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/27805
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42691807      在线人数 : 1542
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27805


    题名: BOUNDED RISK CONDITIONS IN SIMULTANEOUS ESTIMATION OF INDEPENDENT POISSON MEANS
    作者: LIU,YH;YANG,MC
    贡献者: 統計研究所
    关键词: DISCRETE EXPONENTIAL-FAMILIES;ENTROPY LOSS
    日期: 1995
    上传时间: 2010-06-29 19:34:00 (UTC+8)
    出版者: 中央大學
    摘要: In this paper, we consider the simultaneous estimation of Poisson means under the loss function L(m)(c)(theta, delta) = Sigma(i=1)(p) c(i) theta(-mi)(theta(i)-delta(i))(2), where m(1), ... , m(p) are known real numbers and c(1) , ... , c(p) are positive known constants. A necessary and sufficient condition for the loss functions to have estimators with bounded risk is given. In particular, we find that the naive estimator delta(0)(X) = 0 is the unique minimax admissible estimator under the loss L(m)(c) with ail m(i)'s equal to 2. The question of whether there exists any proper Bayes minimax estimator, under some loss functions, will be addressed in this paper. The estimators proposed by Ghosh et al. (Ann. Statist. 11 (1983), 351-376), etc., which dominate the usual estimator X, are shown to have unbounded risk functions, and truncated estimators having bounded risk are constructed. Further, the truncated estimators are shown to be admissible when it is known that the original estimators are admissible.
    關聯: JOURNAL OF STATISTICAL PLANNING AND INFERENCE
    显示于类别:[統計研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML432检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明