中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/27805
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42708093      線上人數 : 1462
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27805


    題名: BOUNDED RISK CONDITIONS IN SIMULTANEOUS ESTIMATION OF INDEPENDENT POISSON MEANS
    作者: LIU,YH;YANG,MC
    貢獻者: 統計研究所
    關鍵詞: DISCRETE EXPONENTIAL-FAMILIES;ENTROPY LOSS
    日期: 1995
    上傳時間: 2010-06-29 19:34:00 (UTC+8)
    出版者: 中央大學
    摘要: In this paper, we consider the simultaneous estimation of Poisson means under the loss function L(m)(c)(theta, delta) = Sigma(i=1)(p) c(i) theta(-mi)(theta(i)-delta(i))(2), where m(1), ... , m(p) are known real numbers and c(1) , ... , c(p) are positive known constants. A necessary and sufficient condition for the loss functions to have estimators with bounded risk is given. In particular, we find that the naive estimator delta(0)(X) = 0 is the unique minimax admissible estimator under the loss L(m)(c) with ail m(i)'s equal to 2. The question of whether there exists any proper Bayes minimax estimator, under some loss functions, will be addressed in this paper. The estimators proposed by Ghosh et al. (Ann. Statist. 11 (1983), 351-376), etc., which dominate the usual estimator X, are shown to have unbounded risk functions, and truncated estimators having bounded risk are constructed. Further, the truncated estimators are shown to be admissible when it is known that the original estimators are admissible.
    關聯: JOURNAL OF STATISTICAL PLANNING AND INFERENCE
    顯示於類別:[統計研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML432檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明