English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43212241      線上人數 : 1198
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    NCU Institutional Repository > 理學院 > 數學系 > 期刊論文 >  Item 987654321/51136


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51136


    題名: Minimizers of Caffarelli-Kohn-Nirenberg Inequalities with the Singularity on the Boundary
    作者: Chern,JL;Lin,CS
    貢獻者: 數學系
    關鍵詞: SEMILINEAR ELLIPTIC-EQUATIONS;INTERPOLATION INEQUALITIES;EXTREMAL-FUNCTIONS;POSITIVE SOLUTIONS;SCALAR CURVATURE;SHARP CONSTANTS;SOBOLEV;SYMMETRY;NONEXISTENCE;EXISTENCE
    日期: 2010
    上傳時間: 2012-03-27 18:22:56 (UTC+8)
    出版者: 國立中央大學
    摘要: Let Omega be a bounded smooth domain in R(N), N >= 3, and D(a)(1,2) (Omega) be the completion of C(0)(infinity) (Omega) with respect to the norm: ||u||(2)(a) = integral(Omega)|x|(-2a)|del u|(2)dx. The Caffarelli-Kohn-Nirenberg inequalities state that there is a constant C > 0 such that (integral(Omega)|x|(-bq)|u|(q)dx)(2/q) <= C integral(Omega)|x|(-2a)|del u|dx for u is an element of D(a)(1,2) (Omega) and [GRAPHICS] We prove the best constant for (0.1) [GRAPHICS] is always achieved in D(a)(1,2) (Omega) provided that 0 is an element of partial derivative Omega and the mean curvature H(0) < 0, where a, b satisfies (i) a < b < a + 1 and N >= 3, or (ii) b = a > 0 and N >= 4. If a = 0 and 1 > b > 0, then the result was proved by Ghoussoub and Robert [12].
    關聯: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
    顯示於類別:[數學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML545檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明