中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/73672
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42693346      在线人数 : 1571
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/73672


    题名: 決策樹、羅吉斯迴歸與類神經網路預測員工績效之比較研究
    作者: 陳冠吟;Chen, Guan-Yin
    贡献者: 人力資源管理研究所
    关键词: 資料探勘;人力資源管理;決策樹;羅吉斯迴歸;類神經網路;data exploration;human resource management;decision tree;logistic regression;neural network
    日期: 2017-06-13
    上传时间: 2017-10-27 12:09:22 (UTC+8)
    出版者: 國立中央大學
    摘要: 人力資源領域中將資料探勘的分類技術應用於各方面並未相當常見。本研究將運用個案公司所提供人事資料庫之資料作為研究樣本,經由資料的蒐集及彙整過後,將資料進行分割,主要拆分為訓練樣本及驗證樣本兩部分,並以決策樹、羅吉斯迴歸、類神經網路等三種資料探勘技術建構員工績效高低預後模型。
      結果顯示,以決策樹及類神經網路預測員工績效高低情形的模型為最佳,兩種模型準確度都有90%,ROC曲線下面積AUC值分別為0.907和0.914,表示決策樹及類神經網路模型不管在準確度或是AUC值之兩種模型好壞評估標準上都屬於擁有優良預測能力的模型。
    ;Using classification data-mining algorithm in predicting employee performance is rare. This study uses personnel data as research sample. After data cleaning and compiling process, data is divided into training dataset and the verification dataset. Then, this study uses three data mining technologies including decision tree, logistic regression and neural network to build employee performance prediction model by using training dataset.
      The results show that the model of decision tree and neural network are the best in predicting employee performance by using verification dataset. Two accuracy of two model is 90%. Moreover, AUC is 0.907 and 0.914. It indicates that decision tree and neural network model have better prediction ability than logistic regression.
    显示于类别:[人力資源管理研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML228检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明