English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42749871      線上人數 : 1587
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/75192


    題名: 以連續小波之光體積描記法解析心肺系統之生理耦合效應;Photoplethysmographic Derivation of Cardiorespiratory Coupling Effect Using Continuous Wavelet Transformation
    作者: 陳政緯;Chen, Cheng-Wei
    貢獻者: 光電科學與工程學系
    關鍵詞: 光體積描紀;小波轉換;生理耦合效應;Photoplethysmographic;Continuous Wavelet Transformation;Cardiorespiratory Coupling Effect
    日期: 2017-07-26
    上傳時間: 2017-10-27 17:18:19 (UTC+8)
    出版者: 國立中央大學
    摘要: 本論文利用穿透式之光體積描記法(Photoplethysmography, PPG)量測人體脈搏波形(cardiac pulse waveforms),提出一套生理訊號演算法,分析呼吸系統(respiratory system)與心肺系統(cardiopulmonary system)之生理節律(physiological rhythms)及同步生理交互作用。
    以小波轉換(Continuous Wavelet Transformation, CWT)為基礎,以其能分析即時(real time)頻譜分布(spectrum)的特性,即時監控心率(Heart Rate, HR)與心率變異度(Heart Rate Variability, HRV),證明心率高(~2Hz)與心率低(~1Hz)時分別對應到吸氣(inspiration)與吐氣(expiration)時間。利用主峰心率(peak frequency of HR)描繪心率變異波形與提取呼吸頻率(~0.1Hz);並由其權重(weighting)極大值訊號推論出呼吸波形。
    以反小波轉換(Inverse Continuous Wavelet Transformation, ICWT)能夠重建無時間延遲訊號的特性,將心跳訊號(heart beat signal)分成吸氣與吐氣時之心跳訊號,並繪出其演化圖。再由重建之呼吸波形判斷呼吸深度(depth of respiration)。最後根據心跳倍頻之反小波轉換圖,解釋呼吸頻率(~0.1Hz)造成心率以0.1Hz的拍頻疊加出心跳波形。
    ;In this thesis, we use transmitted PPG to measure human cardiac pulse waveforms. And we develop the algorithm for physiological signal to analyze the physiological rhythms and synchronized physiological interaction of cardiopulmonary system and respiratory system.
    Based on Continuous Wavelet Transformation(CWT) and the CWT characteristic of analyzing real time spectrum, instantly monitor heart rate(HR) and heart rate variability(HRV) to prove that the moment of high HR(~2Hz) and low HR(~1Hz) corresponds to inspiration and expiration, respectively. We apply peak frequency of HR to depict waveform of HRV and obtain the frequency of respiration. And pick the signal of maximum weighting to derive the waveform of respiration.
    According to the characteristic of Inverse Continuous Wavelet Transformation(ICWT), we can rebuild the signal without time delay and separate the HR signal into two parts, HR with inspiration and HR with expiration. Moreover, depict the evolution of HR waveform. Based on rebuilt waveform of respiration, determine the depth of respiration. Finally, by applying ICWT to second harmonic of HR, explain that the frequency of respiration(~0.1Hz) causes HR to form the waveforms with 0.1Hz beat frequency.
    顯示於類別:[光電科學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML262檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明