在此論文中,我們探討「正規壓縮算子」與「正規延拓算子」的性質。在「正規壓縮算子的數值域」(參考文獻8)中有如下的結果:『對於n+1階正規矩陣N的兩個n階正規壓縮算子A與B,A與B么正等價,若且唯若,A與B的所有特徵值都相同(包含重根)』。這篇論文的主要目地則是將上述結果推廣,並分成N是么正矩陣與N是正規矩陣兩種情形來探討。當N是么正矩陣時,A與B么正等價,若且唯若,A與B有超過半數的特徵值相同(包含重根);當N是正規矩陣時,A與B么正等價,若且唯若,A與B有n-1個特徵值相同(包含重根)。 In this thesis, we have two main results. First, we present the n-dimensional compressions of an (n+1)- dimensional unitary matrix are determined, up to unitary equivalence, by only half of their eigenvalues (counting multiplities). Second, we present the n-dimensional compressions of an (n+1)- dimensional normal matrix are determined, up to unitary equivalence, by their n-1 eigenvalues (counting multiplities).